Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 30(8): 1630-1641, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38319672

ABSTRACT

PURPOSE: The immunocytokine cergutuzumab amunaleukin (CEA-IL2v) showed manageable safety and favorable pharmacodynamics in phase I/Ib trials in patients with advanced/metastatic carcinoembryonic antigen-positive (CEA+) solid tumors, but this was accompanied by a high incidence of anti-drug antibodies (ADA). We examined B-cell depletion with obinutuzumab as a potential mitigation strategy. EXPERIMENTAL DESIGN: Preclinical data comparing B-cell depletion with rituximab versus obinutuzumab are summarized. Substudies of phase I/Ib trials investigated the effect of obinutuzumab pretreatment on ADA development, safety, pharmacodynamics, and antitumor activity of CEA-IL2v ± atezolizumab in patients with advanced/metastatic or unresectable CEA+ solid tumors who had progressed on standard of care. RESULTS: Preclinical data showed superior B-cell depletion with obinutuzumab versus rituximab. In clinical studies, patients received CEA-IL2v monotherapy with (n = 16) or without (n = 6) obinutuzumab pretreatment (monotherapy study), or CEA-IL2v + atezolizumab + obinutuzumab pretreatment (n = 5; combination study). In the monotherapy study, after four cycles (every 2 weeks treatment), 0/15 evaluable patients administered obinutuzumab pretreatment had ADAs versus 4/6 patients without obinutuzumab. Obinutuzumab pretreatment with CEA-IL2v monotherapy showed no new safety signals and pharmacodynamic data suggested minimal impact on T cells and natural killer cells. Conversely, increased liver toxicity was observed in the combination study (CEA-IL2v + atezolizumab + obinutuzumab pretreatment). CONCLUSIONS: These preliminary findings suggest that obinutuzumab pretreatment before CEA-IL2v administration in patients with CEA+ solid tumors may be a feasible and potent ADA mitigation strategy, with an acceptable safety profile, supporting broader investigation of obinutuzumab pretreatment for ADA mitigation in other settings.


Subject(s)
Antibodies, Monoclonal, Humanized , Carcinoembryonic Antigen , Neoplasms , Humans , Rituximab , Neoplasms/drug therapy
2.
Cell Rep ; 36(1): 109309, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233193

ABSTRACT

αvß8 integrin, a key activator of transforming growth factor ß (TGF-ß), inhibits anti-tumor immunity. We show that a potent blocking monoclonal antibody against αvß8 (ADWA-11) causes growth suppression or complete regression in syngeneic models of squamous cell carcinoma, mammary cancer, colon cancer, and prostate cancer, especially when combined with other immunomodulators or radiotherapy. αvß8 is expressed at the highest levels in CD4+CD25+ T cells in tumors, and specific deletion of ß8 from T cells is as effective as ADWA-11 in suppressing tumor growth. ADWA-11 increases expression of a suite of genes in tumor-infiltrating CD8+ T cells normally inhibited by TGF-ß and involved in tumor cell killing, including granzyme B and interferon-γ. The in vitro cytotoxic effect of tumor CD8 T cells is inhibited by CD4+CD25+ cells, and this suppressive effect is blocked by ADWA-11. These findings solidify αvß8 integrin as a promising target for cancer immunotherapy.


Subject(s)
Immunity , Immunotherapy , Integrins/metabolism , Models, Biological , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/immunology , Animals , Antibodies, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Granzymes/metabolism , Interferon-gamma/metabolism , Lymphocyte Depletion , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction , Smad3 Protein/metabolism , Survival Analysis , T-Lymphocytes, Cytotoxic/immunology , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
3.
Bioorg Med Chem Lett ; 23(12): 3565-9, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23664880

ABSTRACT

A novel series of indole/indazole-aminopyrimidines was designed and synthesized with an aim to achieve optimal potency and selectivity for the c-Jun kinase family or JNKs. Structure guided design was used to optimize the series resulting in a significant potency improvement. The best compound (17) has IC50 of 3 nM for JNK1 and 20 nM for JNK2, with greater than 40-fold selectivity against other kinases with good physicochemical and pharmacokinetic properties.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Crystallography, X-Ray , Indazoles/chemistry , Indazoles/pharmacology , JNK Mitogen-Activated Protein Kinases/chemistry , Phosphorylation , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 22(24): 7381-7, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23142618

ABSTRACT

A novel series of highly selective JNK inhibitors based on the 4-quinolone scaffold was designed and synthesized. Structure based drug design was utilized to guide the compound design as well as improvements in the physicochemical properties of the series. Compound (13c) has an IC(50) of 62/170 nM for JNK1/2, excellent kinase selectivity and impressive efficacy in a rodent asthma model.


Subject(s)
4-Quinolones/pharmacology , Drug Discovery , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , 4-Quinolones/chemical synthesis , 4-Quinolones/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
5.
Immunity ; 35(5): 746-56, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22078222

ABSTRACT

Anergic B cells are characterized by impaired signaling and activation after aggregation of their antigen receptors (BCR). The molecular basis of this impairment is not understood. In studies reported here, Src homology-2 (SH2)-containing inositol 5-phosphatase SHIP-1 and its adaptor Dok-1 were found to be constitutively phosphorylated in anergic B cells, and activation of this inhibitory circuit was dependent on Src-family kinase activity and consequent to biased BCR immunoreceptor tyrosine-based activation motif (ITAM) monophosphorylation. B cell-targeted deletion of SHIP-1 caused severe lupus-like disease. Moreover, absence of SHIP-1 in B cells led to loss of anergy as indicated by restoration of BCR signaling, loss of anergic surface phenotype, and production of autoantibodies. Thus, chronic BCR signals maintain anergy in part via ITAM monophosphorylation-directed activation of an inhibitory signaling circuit involving SHIP-1 and Dok-1.


Subject(s)
B-Lymphocytes/immunology , CD79 Antigens/metabolism , Clonal Anergy/immunology , Phosphoric Monoester Hydrolases/metabolism , Signal Transduction , Amino Acid Motifs , Animals , Autoimmunity/genetics , Autoimmunity/immunology , B-Lymphocytes/metabolism , Cell Line, Tumor , Cells, Cultured , DNA-Binding Proteins/metabolism , Gene Targeting , Inositol Polyphosphate 5-Phosphatases , Mice , Mice, Transgenic , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Phosphoproteins/metabolism , Phosphorylation , RNA-Binding Proteins/metabolism , Tyrosine/metabolism , src-Family Kinases/metabolism
6.
Blood ; 115(22): 4393-402, 2010 Jun 03.
Article in English | MEDLINE | ID: mdl-20194898

ABSTRACT

CD20 is an important target for the treatment of B-cell malignancies, including non-Hodgkin lymphoma as well as autoimmune disorders. B-cell depletion therapy using monoclonal antibodies against CD20, such as rituximab, has revolutionized the treatment of these disorders, greatly improving overall survival in patients. Here, we report the development of GA101 as the first Fc-engineered, type II humanized IgG1 antibody against CD20. Relative to rituximab, GA101 has increased direct and immune effector cell-mediated cytotoxicity and exhibits superior activity in cellular assays and whole blood B-cell depletion assays. In human lymphoma xenograft models, GA101 exhibits superior antitumor activity, resulting in the induction of complete tumor remission and increased overall survival. In nonhuman primates, GA101 demonstrates superior B cell-depleting activity in lymphoid tissue, including in lymph nodes and spleen. Taken together, these results provide compelling evidence for the development of GA101 as a promising new therapy for the treatment of B-cell disorders.


Subject(s)
Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/pharmacology , Antigens, CD20/immunology , B-Lymphocytes/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal, Murine-Derived , Antibody-Dependent Cell Cytotoxicity , Cell Line, Tumor , Cytotoxicity, Immunologic , Female , Humans , Immunity, Cellular , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Variable Region/genetics , In Vitro Techniques , Lymphocyte Depletion/methods , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/therapy , Lymphoma, Non-Hodgkin/immunology , Lymphoma, Non-Hodgkin/therapy , Macaca fascicularis , Mice , Mice, SCID , Neoplasm Transplantation , Protein Engineering , Receptors, IgG/immunology , Rituximab , Transplantation, Heterologous
7.
J Pharmacol Exp Ther ; 327(3): 610-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18776065

ABSTRACT

P38alpha is a protein kinase that regulates the expression of inflammatory cytokines, suggesting a role in the pathogenesis of diseases such as rheumatoid arthritis (RA) or systemic lupus erythematosus. Here, we describe the preclinical pharmacology of pamapimod, a novel p38 mitogen-activated protein kinase inhibitor. Pamapimod inhibited p38alpha and p38beta enzymatic activity, with IC(50) values of 0.014 +/- 0.002 and 0.48 +/- 0.04 microM, respectively. There was no activity against p38delta or p38gamma isoforms. When profiled across 350 kinases, pamapimod bound only to four kinases in addition to p38. Cellular potency was assessed using phosphorylation of heat shock protein-27 and c-Jun as selective readouts for p38 and c-Jun NH(2)-terminal kinase (JNK), respectively. Pamapimod inhibited p38 (IC(50), 0.06 microM), but inhibition of JNK was not detected. Pamapimod also inhibited lipopolysaccharide (LPS)-stimulated tumor necrosis factor (TNF) alpha production by monocytes, interleukin (IL)-1beta production in human whole blood, and spontaneous TNFalpha production by synovial explants from RA patients. LPS- and TNFalpha-stimulated production of TNFalpha and IL-6 in rodents also was inhibited by pamapimod. In murine collagen-induced arthritis, pamapimod reduced clinical signs of inflammation and bone loss at 50 mg/kg or greater. In a rat model of hyperalgesia, pamapimod increased tolerance to pressure in a dose-dependent manner, suggesting an important role of p38 in pain associated with inflammation. Finally, an analog of pamapimod that has equivalent potency and selectivity inhibited renal disease in lupus-prone MRL/lpr mice. Our study demonstrates that pamapimod is a potent, selective inhibitor of p38alpha with the ability to inhibit the signs and symptoms of RA and other autoimmune diseases.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridones/pharmacology , Pyrimidines/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Arthritis, Rheumatoid/drug therapy , Drug Evaluation, Preclinical , Humans , Inflammation/drug therapy , Inhibitory Concentration 50 , Interleukin-1beta/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Kidney Diseases/prevention & control , Mice , Monocytes/immunology , Monocytes/metabolism , Osteoporosis/prevention & control , Protein Isoforms , Pyridones/therapeutic use , Pyrimidines/therapeutic use , Synovial Fluid/immunology , Synovial Fluid/metabolism , Treatment Outcome , Tumor Necrosis Factor-alpha/antagonists & inhibitors
8.
J Immunol ; 179(5): 2695-9, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17709481

ABSTRACT

C3dg adducts of Ag can coligate complement receptor type 2 (CR2; CD21) and the B cell Ag receptor. This interaction significantly amplifies BCR-mediated signals in Ag-naive wild-type mice, lowering the threshold for B cell activation and the generation of humoral immune responses as much as 1000-fold. In this study we demonstrate that CR2-mediated complementation of BCR signals can also overcome B cell anergy. Unlike Ag alone, BCR/CR2 costimulation (Ars-CCG/C3dg complexes) of anergic Ars/A1 B cells led to Ca(2+) mobilization in vitro and the production of autoantibodies in vivo. Interestingly, the in vivo immune response of anergic cells occurs without the formation of germinal centers. These results suggest that the Ag unresponsiveness of anergic B cells can be overcome by cross-reactive (self-mimicking) Ags that have been complement-opsonized. This mechanism may place individuals exposed to complement-fixing bacteria at risk for autoimmunity.


Subject(s)
Autoantibodies/immunology , B-Lymphocytes/immunology , Clonal Anergy/immunology , Complement C3b/immunology , Peptide Fragments/immunology , Receptors, Complement 3d/agonists , Animals , Antigens/immunology , Antigens/pharmacology , B-Lymphocytes/drug effects , Calcium/metabolism , Clonal Anergy/drug effects , Complement C3b/pharmacology , Cross Reactions , Mice , Mice, Inbred C57BL , Peptide Fragments/pharmacology , Receptors, Antigen, B-Cell/agonists , Receptors, Antigen, B-Cell/immunology , Receptors, Complement 3d/immunology
9.
J Leukoc Biol ; 78(5): 1086-96, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16204632

ABSTRACT

Pulmonary gammadelta T cells protect the lung and its functions, but little is known about their distribution in this organ and their relationship to other pulmonary cells. We now show that gammadelta and alphabeta T cells are distributed differently in the normal mouse lung. The gammadelta T cells have a bias for nonalveolar locations, with the exception of the airway mucosa. Subsets of gammadelta T cells exhibit further variation in their tissue localization. gammadelta and alphabeta T cells frequently contact other leukocytes, but they favor different cell-types. The gammadelta T cells show an intrinsic preference for F4/80+ and major histocompatibility complex class II+ leukocytes. Leukocytes expressing these markers include macrophages and dendritic cells, known to function as sentinels of airways and lung tissues. The continuous interaction of gammadelta T cells with these sentinels likely is related to their protective role.


Subject(s)
Leukocytes/immunology , Lung/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Animals , Lung/cytology , Mice , Mice, Inbred C57BL , Microscopy, Confocal/methods , Myeloid Cells/immunology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology
10.
Immunity ; 21(3): 443-53, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15357954

ABSTRACT

Although found predominantly in the peritoneal and pleural cavities, B-1 cells are also present in other peripheral tissues such as spleen and lung. While similar in surface phenotypes, such as CD5, all B-1 cells are not equivalent in their response to stimuli. Here, we report that the src family kinase Lck is required to confer the BCR hyporesponsiveness typical of CD5+ B-1 cells and appears involved in the maintenance of their unique function. Splenic B-1 cells express CD5 but not Lck and are not hyporesponsive; however, within the peritoneum, these B-1 cells are induced to express Lck and acquire a hyporesponsive phenotype. Peritoneal B-1 cells from lck-deficient mice, while CD5+, no longer exhibit attenuated BCR signaling. Interestingly, lck-null mice exhibited increased natural antibody levels characteristic of B-1 cells. Taken together, these results demonstrate a key role for Lck in modulating the signaling and cellular fate of B-1 B cells.


Subject(s)
B-Lymphocyte Subsets/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , Receptors, Antigen, B-Cell/immunology , Signal Transduction/immunology , Adoptive Transfer , Animals , CD5 Antigens/immunology , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Immunoblotting , Immunoglobulin A/blood , Immunoglobulin M/blood , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Mice , Mice, Transgenic , Peritoneum/cytology , Peritoneum/immunology , Precipitin Tests , Spleen/cytology , Spleen/immunology
11.
Mol Immunol ; 41(6-7): 599-613, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15219998

ABSTRACT

All cells continually survey their environment and make decisions based on cues encountered. This requires specific receptors that detect such cues, then transduce signals that initiate the appropriate responses. B lymphocytes provide an archetypal model for such 'adaptive' cellular responses, where signals transmitted by the B cell Ag-receptor (BCR) influence not only cellular selection, maturation, and survival, but are imperative in generating the ultimate effector function of B cells, i.e. antibody production. While other extracellular stimuli and their cognate receptor signals can also influence B cell development, BCR-mediated signals and the way in which they are integrated and regulated are paramount in defining the cell's physiological fate.


Subject(s)
B-Lymphocytes/physiology , Receptors, Antigen, B-Cell/physiology , Signal Transduction/physiology , Animals , B-Lymphocytes/immunology , Humans , Receptors, Antigen, B-Cell/immunology , Signal Transduction/immunology
12.
J Immunol ; 169(4): 1735-43, 2002 Aug 15.
Article in English | MEDLINE | ID: mdl-12165494

ABSTRACT

Normal animals contain an autoreactive B lymphocyte subset, the B-1 subset, which is controlled by undefined mechanisms to prevent autoimmunity. Using a V(H)11V(kappa)9 Ig transgenic mouse, with a specificity prototypic of the subset, we have explored conditions responsible for the previously reported Ag hyporesponsiveness of these cells. We report that peritoneal V(H)11V(kappa)9 B cells exhibit typical B-1 behavior with high basal intracellular free Ca(2+) and negligible receptor-mediated calcium mobilization. However, splenic B cells from this mouse, while phenotypically similar to their peritoneal counterparts, including expression of CD5, mount robust B-2-like responses to Ag as measured by calcium influx and altered tyrosine phosphorylation responses. When these splenic cells are adoptively transferred to the peritoneal cavity and encounter their cognate self-Ag, they acquire a B-1 signaling phenotype. The ensuing hyporesponsiveness is characterized by increases in both basal intracellular calcium and resting tyrosyl phosphorylation levels and is highlighted by a marked abrogation of B cell receptor-mediated calcium mobilization. Thus, we show that self-Ag recognition in specific microenvironments such as the peritoneum, and we would propose other privileged sites, confers a unique form of anergy on activated B cells. This may explain how autoreactive B-1 cells can exist while autoimmunity is avoided.


Subject(s)
Autoimmunity , B-Lymphocyte Subsets/immunology , Receptors, Antigen, B-Cell/metabolism , Adoptive Transfer , Animals , B-Lymphocyte Subsets/metabolism , Calcium/metabolism , Calcium Signaling , Clonal Anergy , Lymphocyte Activation , Mice , Mice, Transgenic , Models, Immunological , Peritoneal Cavity/cytology , Phenotype , Receptors, Antigen, B-Cell/genetics , Spleen/cytology , Spleen/immunology
13.
Science ; 296(5573): 1641-2, 2002 May 31.
Article in English | MEDLINE | ID: mdl-12040177

ABSTRACT

Signals propagated through the B cell antigen receptor (BCR) are vital for the development and survival of B lymphocytes in both the bone marrow and the periphery. These signals not only guide maturation and activation but also affect the removal of potentially self-reactive B lymphocytes. Interestingly, these signals are known to be either ligand-independent ("tonic" signals) or induced by ligand (antigen) binding to the BCR. We focus on the problems that occur in B cell development due to defects in signals emanating from the BCR. In addition, we present the B Cell Antigen Receptor Pathway, an STKE Connections Map that illustrates the events involved in B cell signaling.


Subject(s)
B-Lymphocytes/immunology , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Animals , Antigens, CD19/metabolism , Autoimmune Diseases/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/physiology , Humans , Immunologic Deficiency Syndromes/immunology , Lymphocyte Activation , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Receptors, Antigen, B-Cell/chemistry
14.
J Exp Med ; 195(9): 1215-21, 2002 May 06.
Article in English | MEDLINE | ID: mdl-11994427

ABSTRACT

To understand the relationship between the affinity of the B cell antigen receptor (BCR) and the immune response to antigen, two lines of immunoglobulin H chain transgenic (Tg) mice were created. H50Gmu(a) and T1(V23)mu(a) mice express mu H chain transgenes that associate with the lambda1 L chains to bind the (4-hydroxy-3-nitrophenyl)acetyl hapten with association constants (K(a)s) of only 1.2 x 10(5) M(-1) and 3 x 10(4) M(-1), respectively. Both lines mounted substantial antibody-forming cell (AFC) and germinal center (GC) responses. H50Gmu(a) Tg mice also generated memory B cells. T1(V23)mu(a) B cells formed AFC and GCs, but were largely replaced in late GCs by antigen-specific cells that express endogenous BCRs. Thus, B lymphocytes carrying BCRs with affinities previously thought to be irrelevant in specific immune responses are in fact capable of complete T cell-dependent immune responses when relieved of substantial competition from other B cells. The failure to observe such B cells normally in late primary responses and in memory B cell populations is the result of competition, rather than an intrinsic inability of low affinity B cells.


Subject(s)
B-Lymphocytes/immunology , Immunologic Memory , Receptors, Antigen, B-Cell/immunology , Animals , Antibody Formation , Gene Rearrangement, B-Lymphocyte , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Mice , Mice, SCID , Mice, Transgenic , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...