Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 188(1): 490-508, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34726761

ABSTRACT

Somatic embryogenesis (SE) represents the most appropriate tool for next-generation breeding methods in woody plants such as grapevine (Vitis vinifera L.). However, in this species, the SE competence is strongly genotype-dependent and the molecular basis of this phenomenon is poorly understood. We explored the genetic and epigenetic basis of SE in grapevine by profiling the transcriptome, epigenome, and small RNAome of undifferentiated, embryogenic, and non-embryogenic callus tissues derived from two genotypes differing in competence for SE, Sangiovese and Cabernet Sauvignon. During the successful formation of embryonic callus, we observed the upregulation of epigenetic-related transcripts and short interfering RNAs in association with DNA hypermethylation at transposable elements in both varieties. Nevertheless, the switch to nonembryonic development matched the incomplete reinforcement of transposon silencing, and the evidence of such effect was more apparent in the recalcitrant Cabernet Sauvignon. Transcriptomic differences between the two genotypes were maximized already at early stage of culture where the recalcitrant variety expressed a broad panel of genes related to stress responses and secondary metabolism. Our data provide a different angle on the SE molecular dynamics that can be exploited to leverage SE as a biotechnological tool for fruit crop breeding.


Subject(s)
Adaptation, Physiological/genetics , Epigenomics , Organogenesis, Plant/genetics , Seeds/growth & development , Seeds/genetics , Vitis/growth & development , Vitis/genetics , Cells, Cultured , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Plant Somatic Embryogenesis Techniques
2.
Plant Mol Biol ; 103(1-2): 91-111, 2020 May.
Article in English | MEDLINE | ID: mdl-32043226

ABSTRACT

KEY MESSAGE: Auxin treatment of grape (Vitis vinifera L.) berries delays ripening by inducing changes in gene expression and cell wall metabolism and could combat some deleterious climate change effects. Auxins are inhibitors of grape berry ripening and their application may be useful to delay harvest to counter effects of climate change. However, little is known about how this delay occurs. The expression of 1892 genes was significantly changed compared to the control during a 48 h time-course where the auxin 1-naphthaleneacetic acid (NAA) was applied to pre-veraison grape berries. Principal component analysis showed that the control and auxin-treated samples were most different at 3 h post-treatment when approximately three times more genes were induced than repressed by NAA. There was considerable cross-talk between hormone pathways, particularly between those of auxin and ethylene. Decreased expression of genes encoding putative cell wall catabolic enzymes (including those involved with pectin) and increased expression of putative cellulose synthases indicated that auxins may preserve cell wall structure. This was confirmed by immunochemical labelling of berry sections using antibodies that detect homogalacturonan (LM19) and methyl-esterified homogalacturonan (LM20) and by labelling with the CMB3a cellulose-binding module. Comparison of the auxin-induced changes in gene expression with the pattern of these genes during berry ripening showed that the effect on transcription is a mix of changes that may specifically alter the progress of berry development in a targeted manner and others that could be considered as non-specific changes. Several lines of evidence suggest that cell wall changes and associated berry softening are the first steps in ripening and that delaying cell expansion can delay ripening providing a possible mechanism for the observed auxin effects.


Subject(s)
Cell Wall/drug effects , Indoleacetic Acids/pharmacology , Plant Cells/drug effects , Plant Growth Regulators/pharmacology , Vitis/drug effects , Cell Enlargement/drug effects , Cell Wall/genetics , Fruit/drug effects , Fruit/growth & development , Gene Expression Regulation, Plant/drug effects , Naphthaleneacetic Acids/pharmacology , Plant Cells/physiology , Time , Vitis/growth & development
3.
Plant Physiol Biochem ; 135: 411-422, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30473420

ABSTRACT

During grape postharvest withering, a worldwide practice used to produce important high-quality wines, the solute concentration increases due to dehydration, and many organoleptic and quality traits, especially related to the berry skin, are affected in a cultivar-specific manner. Nevertheless, a complete comprehension of the underlying processes is still lacking. In this work, we applied ATR-FTIR micro-spectroscopy combined with PCA to monitor cell wall biochemical changes at three stages during postharvest withering on the internal and external sides of the berry skin of the Vitis vinifera cv. Corvina, an important local variety of the Verona province in Italy. The obtained results were integrated by profiling xylogucans and pectins through immunohistochemistry and by genome-wide transcriptomic analysis performed at the same withering stages. Our analysis indicates a gradual passive polymer concentration due to water loss in the first two months of postharvest withering, followed by active structural modifications in the last month of the process. Such rearrangements involve xyloglucans in the internal surface, cuticle components and cellulose in the external surface, and pectins in both surfaces. Moreover, by investigating the expression trend of cell wall metabolism-related genes, we identified several putative molecular markers associated to the polymer dynamics. The present study represents an important step towards an exhaustive comprehension of the postharvest withering process, which is of great interest from both the biological and technological points of view.


Subject(s)
Cell Wall/metabolism , Fruit/metabolism , Plant Epidermis/metabolism , Vitis/metabolism , Cell Wall/physiology , Cellulose/metabolism , Fluorescent Antibody Technique , Fruit/physiology , Fruit/ultrastructure , Galactans/metabolism , Gene Expression Profiling , Glucans/metabolism , Pectins/metabolism , Plant Epidermis/physiology , Plant Epidermis/ultrastructure , Polymers/metabolism , Spectroscopy, Fourier Transform Infrared , Vitis/physiology , Vitis/ultrastructure , Xylans/metabolism
4.
Plant Physiol ; 178(3): 1187-1206, 2018 11.
Article in English | MEDLINE | ID: mdl-30224433

ABSTRACT

Grapevine (Vitis vinifera) is a model for the investigation of physiological and biochemical changes during the formation and ripening of nonclimacteric fleshy fruits. However, the order and complexity of the molecular events during fruit development remain poorly understood. To identify the key molecular events controlling berry formation and ripening, we created a highly detailed transcriptomic and metabolomic map of berry development, based on samples collected every week from fruit set to maturity in two grapevine genotypes for three consecutive years, resulting in 219 samples. Major transcriptomic changes were represented by coordinated waves of gene expression associated with early development, veraison (onset of ripening)/midripening, and late-ripening and were consistent across vintages. The two genotypes were clearly distinguished by metabolite profiles and transcriptional changes occurring primarily at the veraison/midripening phase. Coexpression analysis identified a core network of transcripts as well as variations in the within-module connections representing varietal differences. By focusing on transcriptome rearrangements close to veraison, we identified two rapid and successive shared transitions involving genes whose expression profiles precisely locate the timing of the molecular reprogramming of berry development. Functional analyses of two transcription factors, markers of the first transition, suggested that they participate in a hierarchical cascade of gene activation at the onset of ripening. This study defined the initial transcriptional events that mark and trigger the onset of ripening and the molecular network that characterizes the whole process of berry development, providing a framework to model fruit development and maturation in grapevine.


Subject(s)
Fruit/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Transcriptome , Vitis/genetics , Fruit/growth & development , Gene Expression Regulation, Developmental , Plant Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Vitis/growth & development
5.
Plant Physiol Biochem ; 129: 221-237, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29908490

ABSTRACT

Calcium (Ca2+) is an ubiquitous key second messenger in plants, where it modulates many developmental and adaptive processes in response to various stimuli. Several proteins containing Ca2+ binding domain have been identified in plants, including calmodulin (CaM) and calmodulin-like (CML) proteins, which play critical roles in translating Ca2+ signals into proper cellular responses. In this work, a genome-wide analysis conducted in Vitis vinifera identified three CaM- and 62 CML-encoding genes. We assigned gene family nomenclature, analyzed gene structure, chromosomal location and gene duplication, as well as protein motif organization. The phylogenetic clustering revealed a total of eight subgroups, including one unique clade of VviCaMs distinct from VviCMLs. VviCaMs were found to contain four EF-hand motifs whereas VviCML proteins have one to five. Most of grapevine CML genes were intronless, while VviCaMs were intron rich. All the genes were well spread among the 19 grapevine chromosomes and displayed a high level of duplication. The expression profiling of VviCaM/VviCML genes revealed a broad expression pattern across all grape organs and tissues at various developmental stages, and a significant modulation in biotic stress-related responses. Our results highlight the complexity of CaM/CML protein family also in grapevine, supporting the versatile role of its different members in modulating cellular responses to various stimuli, in particular to biotic stresses. This work lays the foundation for further functional and structural studies on specific grapevine CaMs/CMLs in order to better understand the role of Ca2+-binding proteins in grapevine and to explore their potential for further biotechnological applications.


Subject(s)
Calmodulin/genetics , Genes, Plant/genetics , Vitis/genetics , Calmodulin/physiology , Chromosomes, Plant/genetics , Gene Duplication/genetics , Genes, Plant/physiology , Genome, Plant/genetics , Peronospora , Phylogeny , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/physiology , Real-Time Polymerase Chain Reaction , Sequence Alignment , Stress, Physiological , Transcriptome , Vitis/physiology
6.
Plant J ; 93(6): 1143-1159, 2018 03.
Article in English | MEDLINE | ID: mdl-29381239

ABSTRACT

Changes in the performance of genotypes in different environments are defined as genotype × environment (G×E) interactions. In grapevine (Vitis vinifera), complex interactions between different genotypes and climate, soil and farming practices yield unique berry qualities. However, the molecular basis of this phenomenon remains unclear. To dissect the basis of grapevine G×E interactions we characterized berry transcriptome plasticity, the genome methylation landscape and within-genotype allelic diversity in two genotypes cultivated in three different environments over two vintages. We identified, through a novel data-mining pipeline, genes with expression profiles that were: unaffected by genotype or environment, genotype-dependent but unaffected by the environment, environmentally-dependent regardless of genotype, and G×E-related. The G×E-related genes showed different degrees of within-cultivar allelic diversity in the two genotypes and were enriched for stress responses, signal transduction and secondary metabolism categories. Our study unraveled the mutual relationships between genotypic and environmental variables during G×E interaction in a woody perennial species, providing a reference model to explore how cultivated fruit crops respond to diverse environments. Also, the pivotal role of vineyard location in determining the performance of different varieties, by enhancing berry quality traits, was unraveled.


Subject(s)
Fruit/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Vitis/genetics , Environment , Gene Ontology , Genes, Plant/genetics , Genotype , Phenotype , Vitis/metabolism
7.
Front Plant Sci ; 8: 929, 2017.
Article in English | MEDLINE | ID: mdl-28634482

ABSTRACT

Among environmental factors, temperature is the one that poses serious threats to viticulture in the present and future scenarios of global climate change. In this work, we evaluated the effects on berry ripening of two thermal regimes, imposed from veraison to harvest. Potted vines were grown in two air-conditioned greenhouses with High Temperature (HT) and Low Temperature (LT) regimes characterized by 26 and 21°C as average and 42 and 35°C as maximum air daily temperature, respectively. We conducted analyses of the main berry compositional parameters, berry skin flavonoids and berry skin transcriptome on HT and LT berries sampled during ripening. The two thermal conditions strongly differentiated the berries. HT regime increased sugar accumulation at the beginning of ripening, but not at harvest, when HT treatment contributed to a slight total acidity reduction and pH increase. Conversely, growing temperatures greatly impacted on anthocyanin and flavonol concentrations, which resulted as strongly reduced, while no effects were found on skin tannins accumulation. Berry transcriptome was analyzed with several approaches in order to identify genes with different expression profile in berries ripened under HT or LT conditions. The analysis of whole transcriptome showed that the main differences emerging from this approach appeared to be more due to a shift in the ripening process, rather than to a strong rearrangement at transcriptional level, revealing that the LT temperature regime could delay berry ripening, at least in the early stages. Moreover, the results of the in-depth screening of genes differentially expressed in HT and LT did not highlight differences in the expression of transcripts involved in the biosynthesis of flavonoids (with the exception of PAL and STS) despite the enzymatic activities of PALs and UFGT being significantly higher in LT than HT. This suggests only a partial correlation between molecular and biochemical data in our conditions and the putative existence of post-transcriptional and post-translational mechanisms playing significant roles in the regulation of flavonoid metabolic pathways and in particular of anthocyanins.

8.
Front Plant Sci ; 8: 630, 2017.
Article in English | MEDLINE | ID: mdl-28512461

ABSTRACT

Leaf removal is a grapevine canopy management technique widely used to modify the source-sink balance and/or microclimate around berry clusters to optimize fruit composition. In general, the removal of basal leaves before flowering reduces fruit set, hence achieving looser clusters, and improves grape composition since yield is generally curtailed more than proportionally to leaf area itself. Albeit responses to this practice seem quite consistent, overall vine performance is affected by genotype, environmental conditions, and severity of treatment. The physiological responses of grape varieties to defoliation practices have been widely investigated, and just recently a whole genome transcriptomic approach was exploited showing an extensive transcriptome rearrangement in berries defoliated before flowering. Nevertheless, the extent to which these transcriptomic reactions could be manifested by different genotypes and growing environments is entirely unexplored. To highlight general responses to defoliation vs. different locations, we analyzed the transcriptome of cv. Sangiovese berries sampled at four development stages from pre-flowering defoliated vines in two different geographical areas of Italy. We obtained and validated five markers of the early defoliation treatment in Sangiovese, an ATP-binding cassette transporter, an auxin response factor, a cinnamyl alcohol dehydrogenase, a flavonoid 3-O-glucosyltransferase and an indole-3-acetate beta-glucosyltransferase. Candidate molecular markers were also obtained in another three grapevine genotypes (Nero d'Avola, Ortrugo, and Ciliegiolo), subjected to the same level of selective pre-flowering defoliation (PFD) over two consecutive years in their different areas of cultivation. The flavonol synthase was identified as a marker in the pre-veraison phase, the jasmonate methyltransferase during the transition phase and the abscisic acid receptor PYL4 in the ripening phase. The characterization of transcriptome changes in Sangiovese berry after PFD highlights, on one hand, the stronger effect of environment than treatment on the whole berry transcriptome rearrangement during development and, on the other, expands existing knowledge of the main molecular and biochemical modifications occurring in defoliated vines. Moreover, the identification of candidate genes associated with PFD in different genotypes and environments provides new insights into the applicability and repeatability of this crop practice, as well as its possible agricultural and qualitative outcomes across genetic and environmental variability.

9.
Front Plant Sci ; 8: 640, 2017.
Article in English | MEDLINE | ID: mdl-28484487

ABSTRACT

The determination of food geographical origin has been an important subject of study over the past decade, with an increasing number of analytical techniques being developed to determine the provenance of agricultural products. Agricultural soils can differ for the composition and the relative quantities of mineral nutrients and trace elements whose bioavailability depends on soil properties. Therefore, the ionome of fruits, vegetables and derived products can reflect the mineral composition of the growth substrate. Multi-elemental analysis has been successfully applied to trace the provenance of wines from different countries or different wine-producing regions. However, winemaking process and environmental and cultural conditions may affect a geographical fingerprint. In this article, we discuss the possibility of applying ionomics in wines classification on a local scale and also by exploiting grape berry analyses. In this regard, we present the ionomic profile of grapevine berries grown within an area of approximately 300 km2 and the subsequent application of chemometric methods for the assignment of their geographical origin. The best discrimination was obtained by using a dataset composed only of rare earth elements. Considering the experiences reported in the literature and our results, we concluded that sample representativeness and the application of a preliminary Principal Component Analysis, as pattern recognition techniques, might represent two necessary starting points for the geographical determination of the geographical origin of grape berries; therefore, on the basis of these observations we also include some recommendations to be considered for future application of these techniques for grape and wines classification.

10.
Plant J ; 91(2): 220-236, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28370629

ABSTRACT

Grapevine organs accumulate anthocyanins in a cultivar-specific and environmentally induced manner. The MYBA1-A2 genes within the berry color locus in chromosome 2 represent the major genetic determinants of fruit color. The simultaneous occurrence of transposon insertions and point mutations in these genes is responsible for most white-skinned phenotypes; however, the red pigmentation found in vegetative organs suggests the presence of additional regulators. This work describes a genomic region of chromosome 14 containing three closely related R2R3-MYB genes, named MYBA5, MYBA6 and MYBA7. Ectopic expression of the latter two genes in grapevine hairy roots promoted anthocyanin accumulation without affecting other phenylpropanoids. Transcriptomic profiling of hairy roots expressing MYBA1, MYBA6 and MYBA7 showed that these regulators share the activation of late biosynthetic and modification/transport-related genes, but differ in the activation of the FLAVONOID-3'5'-HYDROXYLASE (F3'5'H) family. An alternatively spliced MYBA6 variant was incapable of activating anthocyanin synthesis, however, because of the lack of an MYC1 interaction domain. MYBA1, MYBA6.1 and MYBA7 activated the promoters of UDP-GLUCOSE:FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UFGT) and ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (3AT), but only MYBA1 induced F3'5'H in concordance with the low proportion of tri-hydroxylated anthocyanins found in MYBA6-A7 hairy roots. This putative new color locus is related to the red/cyanidic pigmentation of vegetative organs in black- and white-skinned cultivars, and forms part of the UV-B radiation response pathway orchestrated by ELONGATED HYPOCOTYL 5 (HY5). These results demonstrate the involvement of additional anthocyanin regulators in grapevine and suggest an evolutionary divergence between the two grape color loci for controlling additional targets of the flavonoid pathway.


Subject(s)
Anthocyanins/biosynthesis , Plant Proteins/genetics , Transcription Factors/genetics , Vitis/metabolism , Anthocyanins/genetics , Chromosomes, Plant , Evolution, Molecular , Gene Expression Regulation, Plant , Pigmentation , Plant Proteins/metabolism , Plant Roots/genetics , Plants, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/metabolism , Vitis/genetics
11.
Rapid Commun Mass Spectrom ; 31(3): 292-300, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27935129

ABSTRACT

RATIONALE: Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are both used to generate ions for the analysis of metabolites by liquid chromatography/mass spectrometry (LC/MS). We compared the performance of these methods for the analysis of Corvina grapevine berry methanolic extracts, which are complex mixtures of diverse metabolites. METHODS: Corvina berries representing three ripening stages (veraison, early-ripening and full-ripening) were collected during two growing seasons, powdered and extracted with methanol. Untargeted metabolomic analysis was carried out by LC/ESI-MS and LC/APCI-MS. Processed data files were assembled into a data matrix for multivariate statistical analysis. The limits of detection (LODs), limits of quantification (LOQs), linear ranges, and matrix effects were investigated for strongly polar metabolites such as sucrose and tartaric acid and for moderately polar metabolites such as caftaric acid, epicatechin and quercetin 3-O-glucoside. RESULTS: Multivariate statistical analysis of the 608 features revealed that APCI was particularly suitable for the ionization of strongly polar metabolites such as sugars and organic acids, whereas ESI was more suitable for moderately polar metabolites such as flavanols, flavones and both glycosylated and acylated anthocyanins. APCI generated more fragment ions whereas ESI generated more adducts. ESI achieved lower LODs and LOQs for sucrose and tartaric acid but featured narrower linear ranges and greater matrix effects. CONCLUSIONS: ESI and APCI are not complementary ion sources. Indeed, ESI can be exploited to analyze moderately polar metabolites, whereas APCI can be used to investigate weakly polar/non-polar metabolites and, as demonstrated by our results, also strongly polar metabolites. ESI and APCI can be used in parallel, exploiting their strengths to cover the plant metabolome more broadly than either method alone. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Chromatography, Liquid/methods , Fruit/chemistry , Metabolomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Vitis/chemistry , Flavonoids/analysis , Fruit/metabolism , Limit of Detection , Linear Models , Metabolome , Multivariate Analysis , Principal Component Analysis , Reproducibility of Results , Sugars/analysis , Vitis/metabolism
12.
Front Plant Sci ; 7: 1459, 2016.
Article in English | MEDLINE | ID: mdl-27761135

ABSTRACT

Understanding the molecular mechanisms involved in the interaction between the genetic composition and the environment is crucial for modern viticulture. We approached this issue by focusing on the small RNA transcriptome in grapevine berries of the two varieties Cabernet Sauvignon and Sangiovese, growing in adjacent vineyards in three different environments. Four different developmental stages were studied and a total of 48 libraries of small RNAs were produced and sequenced. Using a proximity-based pipeline, we determined the general landscape of small RNAs accumulation in grapevine berries. We also investigated the presence of known and novel miRNAs and analyzed their accumulation profile. The results showed that the distribution of small RNA-producing loci is variable between the two cultivars, and that the level of variation depends on the vineyard. Differently, the profile of miRNA accumulation mainly depends on the developmental stage. The vineyard in Riccione maximizes the differences between the varieties, promoting the production of more than 1000 specific small RNA loci and modulating their expression depending on the cultivar and the maturation stage. In total, 89 known vvi-miRNAs and 33 novel vvi-miRNA candidates were identified in our samples, many of them showing the accumulation profile modulated by at least one of the factors studied. The in silico prediction of miRNA targets suggests their involvement in berry development and in secondary metabolites accumulation such as anthocyanins and polyphenols.

13.
BMC Genomics ; 17(1): 815, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27765014

ABSTRACT

BACKGROUND: Grapevine (Vitis vinifera L.) is an economically important crop with a wide geographical distribution, reflecting its ability to grow successfully in a range of climates. However, many vineyards are located in regions with seasonal drought, and these are often predicted to be global climate change hotspots. Climate change affects the entire physiology of grapevine, with strong effects on yield, wine quality and typicity, making it difficult to produce berries of optimal enological quality and consistent stability over the forthcoming decades. RESULTS: Here we investigated the reactions of two grapevine cultivars to water stress, the isohydric variety Montepulciano and the anisohydric variety Sangiovese, by examining physiological and molecular perturbations in the leaf and berry. A multidisciplinary approach was used to characterize the distinct stomatal behavior of the two cultivars and its impact on leaf and berry gene expression. Positive associations were found among the photosynthetic, physiological and transcriptional modifications, and candidate genes encoding master regulators of the water stress response were identified using an integrated approach based on the analysis of topological co-expression network properties. In particular, the genome-wide transcriptional study indicated that the isohydric behavior relies upon the following responses: i) faster transcriptome response after stress imposition; ii) faster abscisic acid-related gene modulation; iii) more rapid expression of heat shock protein (HSP) genes and iv) reversion of gene-expression profile at rewatering. Conversely, that reactive oxygen species (ROS)-scavenging enzymes, molecular chaperones and abiotic stress-related genes were induced earlier and more strongly in the anisohydric cultivar. CONCLUSIONS: Overall, the present work found original evidence of a molecular basis for the proposed classification between isohydric and anisohydric grapevine genotypes.


Subject(s)
Gene Expression Regulation, Plant , Transcriptome , Vitis/genetics , Water , Biomarkers , Carbohydrate Metabolism/genetics , Dehydration/genetics , Droughts , Gene Expression Profiling , Genome, Plant , Genome-Wide Association Study , Oxidative Stress/genetics , Phenotype , Plant Leaves/genetics , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism , Transcription, Genetic , Vitis/metabolism
14.
J Vis Exp ; (116)2016 10 05.
Article in English | MEDLINE | ID: mdl-27768042

ABSTRACT

Terroir refers to the combination of environmental factors that affect the characteristics of crops such as grapevine (Vitis vinifera) according to particular habitats and management practices. This article shows how certain terroir signatures can be detected in the berry metabolome and transcriptome of the grapevine cultivar Corvina using multivariate statistical analysis. The method first requires an appropriate sampling plan. In this case study, a specific clone of the Corvina cultivar was selected to minimize genetic differences, and samples were collected from seven vineyards representing three different macro-zones during three different growing seasons. An untargeted LC-MS metabolomics approach is recommended due to its high sensitivity, accompanied by efficient data processing using MZmine software and a metabolite identification strategy based on fragmentation tree analysis. Comprehensive transcriptome analysis can be achieved using microarrays containing probes covering ~99% of all predicted grapevine genes, allowing the simultaneous analysis of all differentially expressed genes in the context of different terroirs. Finally, multivariate data analysis based on projection methods can be used to overcome the strong vintage-specific effect, allowing the metabolomics and transcriptomics data to be integrated and analyzed in detail to identify informative correlations.


Subject(s)
Metabolomics , Transcriptome , Vitis , Agriculture , Environment , Fruit , Gene Expression Profiling , Metabolome
15.
Plant Physiol ; 172(3): 1821-1843, 2016 11.
Article in English | MEDLINE | ID: mdl-27670818

ABSTRACT

The molecular events that characterize postripening grapevine berries have rarely been investigated and are poorly defined. In particular, a detailed definition of changes occurring during the postharvest dehydration, a process undertaken to make some particularly special wine styles, would be of great interest for both winemakers and plant biologists. We report an exhaustive survey of transcriptomic and metabolomic responses in berries representing six grapevine genotypes subjected to postharvest dehydration under identical controlled conditions. The modulation of phenylpropanoid metabolism clearly distinguished the behavior of genotypes, with stilbene accumulation as the major metabolic event, although the transient accumulation/depletion of anthocyanins and flavonols was the prevalent variation in genotypes that do not accumulate stilbenes. The modulation of genes related to phenylpropanoid/stilbene metabolism highlighted the distinct metabolomic plasticity of genotypes, allowing for the identification of candidate structural and regulatory genes. In addition to genotype-specific responses, a core set of genes was consistently modulated in all genotypes, representing the common features of berries undergoing dehydration and/or commencing senescence. This included genes controlling ethylene and auxin metabolism as well as genes involved in oxidative and osmotic stress, defense responses, anaerobic respiration, and cell wall and carbohydrate metabolism. Several transcription factors were identified that may control these shared processes in the postharvest berry. Changes representing both common and genotype-specific responses to postharvest conditions shed light on the cellular processes taking place in harvested berries stored under dehydrating conditions for several months.


Subject(s)
Fruit/growth & development , Fruit/genetics , Vitis/growth & development , Vitis/genetics , Desiccation , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Genotype , Metabolome/genetics , Metabolomics , Principal Component Analysis , Propanols/metabolism , Stilbenes/metabolism , Transcriptome/genetics
16.
Front Plant Sci ; 7: 970, 2016.
Article in English | MEDLINE | ID: mdl-27462320

ABSTRACT

Grapevine (Vitis vinifera L.) is considered one of the most environmentally sensitive crops and is characterized by broad phenotypic plasticity, offering important advantages such as the large range of different wines that can be produced from the same cultivar, and the adaptation of existing cultivars to diverse growing regions. The uniqueness of berry quality traits reflects complex interactions between the grapevine plant and the combination of natural factors and human cultural practices which leads to the expression of wine typicity. Despite the scientific and commercial importance of genotype interactions with growing conditions, few studies have characterized the genes and metabolites directly involved in this phenomenon. Here, we used two large-scale analytical approaches to explore the metabolomic and transcriptomic basis of the broad phenotypic plasticity of Garganega, a white berry variety grown at four sites characterized by different pedoclimatic conditions (altitudes, soil texture, and composition). These conditions determine berry ripening dynamics in terms of sugar accumulation and the abundance of phenolic compounds. Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols. Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites. Many genes that control transcription, translation, transport, and carbohydrate metabolism showed different expression depending on the environmental conditions, indicating a key role in the observed transcriptomic plasticity of Garganega berries. Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites. The comparison of Garganega and Corvina berries showed that the metabolism of phenolic compounds is more plastic in ripening Garganega berries under different pedoclimatic conditions.

17.
Plant Physiol ; 171(2): 1366-77, 2016 06.
Article in English | MEDLINE | ID: mdl-27208232

ABSTRACT

The first layer of immunity against pathogenic microbes relies on the detection of conserved pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI). Despite the increasing knowledge of early PTI signaling mediated by PRRs and their associated proteins, many downstream signaling components remain elusive. Here, we identify the Arabidopsis (Arabidopsis thaliana) GLYCOGEN SYNTHASE KINASE3 (GSK3)/Shaggy-like kinase ASKα as a positive regulator of plant immune signaling. The perception of several unrelated PAMPs rapidly induced ASKα kinase activity. Loss of ASKα attenuated, whereas its overexpression enhanced, diverse PTI responses, ultimately affecting susceptibility to the bacterial pathogen Pseudomonas syringae Glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the oxidative pentose phosphate pathway, provides reducing equivalents important for defense responses and is a direct target of ASKα. ASKα phosphorylates cytosolic G6PD6 on an evolutionarily conserved threonine residue, thereby stimulating its activity. Plants deficient for or overexpressing G6PD6 showed a modified immune response, and the insensitivity of g6pd6 mutant plants to PAMP-induced growth inhibition was complemented by a phosphomimetic but not by a phosphonegative G6PD6 version. Overall, our data provide evidence that ASKα and G6PD6 constitute an immune signaling module downstream of PRRs, linking protein phosphorylation cascades to metabolic regulation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/immunology , Pathogen-Associated Molecular Pattern Molecules/pharmacology , Plant Immunity , Arabidopsis/drug effects , Chitin/pharmacology , Flagellin/pharmacology , Glucosephosphate Dehydrogenase/metabolism , Glycogen Synthase Kinase 3/metabolism , Plant Immunity/drug effects , Reactive Oxygen Species/metabolism , Threonine/metabolism
18.
Plant Cell Physiol ; 57(6): 1332-49, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27095736

ABSTRACT

Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism-a ß-galactosidase, a pectin(methyl)esterase and a pectate lyase-and a xyloglucan endotransglucosylase/hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin.


Subject(s)
Cellulose/metabolism , Fruit/growth & development , Fruit/metabolism , Pectins/metabolism , Polysaccharides/metabolism , Vitis/growth & development , Vitis/metabolism , Cell Wall/genetics , Cell Wall/metabolism , Fluorescent Antibody Technique , Fruit/genetics , Gene Expression Regulation, Plant , Genes, Plant , Multigene Family , Plant Epidermis/genetics , Plant Epidermis/physiology , Principal Component Analysis , Spectroscopy, Fourier Transform Infrared , Vitis/genetics , Water/metabolism
19.
BMC Plant Biol ; 15: 191, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26245744

ABSTRACT

BACKGROUND: The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. RESULTS: To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. CONCLUSIONS: Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.


Subject(s)
Gene-Environment Interaction , Metabolome , Plant Proteins/genetics , Vitis/genetics , Fruit/genetics , Fruit/metabolism , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Analysis, Protein , Vitis/metabolism
20.
PLoS One ; 9(10): e110372, 2014.
Article in English | MEDLINE | ID: mdl-25330210

ABSTRACT

The RESPONSIVE TO DEHYDRATION 22 (RD22) gene is a molecular link between abscisic acid (ABA) signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses in grapevine.


Subject(s)
Abscisic Acid/metabolism , Fruit/genetics , Stress, Physiological/genetics , Vitis/genetics , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/genetics , Dehydration/genetics , Fruit/growth & development , Fruit/metabolism , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Sequence Analysis, RNA , Vitis/growth & development , Vitis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...