Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 489
Filter
1.
Article in English | MEDLINE | ID: mdl-38861343

ABSTRACT

Asthma is characterized by aberrant airway smooth muscle (ASM) proliferation, which increases the thickness of the ASM layer within the airway wall and exacerbates airway obstruction during asthma attacks. The mechanisms that drive ASM proliferation in asthma are not entirely elucidated. Ten-eleven translocation methylcytosine dioxygenase (TET) is an enzyme that participates in the regulation of DNA methylation by catalyzing the hydroxylation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). The generation of 5-hmC disinhibits the gene silencing effect of 5-mC. In this study, TET1 activity and protein were enhanced in asthmatic human ASM cell cultures. Moreover, the level of 5-hmC was higher in asthmatic ASM cells as compared to nonasthmatic ASM cells. Knockdown (KD) of TET1, but not TET2, reduced the level of 5-hmC in asthmatic cells. Because the cytoskeletal protein nestin controls cell proliferation by modulating mechanistic target of rapamycin (mTOR), we evaluated the effects of TET1 KD on this pathway. TET1 KD reduced nestin expression in ASM cells. Moreover, TET1 inhibition alleviated the platelet-derived growth factor (PDGF)-induced phosphorylation of p70S6K, 4E-BP, S6, and Akt. TET1 inhibition also attenuated the proliferation of ASM cells. Taken together, these results suggest that TET1 drives ASM proliferation via the nestin-mTOR axis.

2.
J Asthma ; : 1-16, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38805392

ABSTRACT

Asthma is a heterogeneous disease characterized by multiple phenotypes with varying risk factors and therapeutic responses. This Commentary describes research on biomarkers for T2-"high" and T2-"low" inflammation, a hallmark of the disease. Patients with asthma who exhibit an increase in airway T2 inflammation are classified as having T2-high asthma. In this endotype, Type 2 cytokines interleukins (IL)-4, IL-5, and IL-13, plus other inflammatory mediators, lead to increased eosinophilic inflammation and elevated fractional exhaled nitric oxide (FeNO). In contrast, T2-low asthma has no clear definition. Biomarkers are considered valuable tools as they can help identify various phenotypes and endotypes, as well as treatment response to standard treatment or potential therapeutic targets, particularly for biologics. As our knowledge of phenotypes and endotypes expands, biologics are increasingly integrated into treatment strategies for severe asthma. These treatments block specific inflammatory pathways or single mediators. While single or composite biomarkers may help to identify subsets of patients who might benefit from these treatments, only a few inflammatory biomarkers have been validated for clinical application. One example is sputum eosinophilia, a particularly useful biomarker, as it may suggest corticosteroid responsiveness or reflect non-compliance to inhaled corticosteroids. As knowledge develops, a meaningful goal would be to provide individualized care to patients with asthma.

3.
Biochem Soc Trans ; 52(3): 1385-1392, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38695682

ABSTRACT

Protein mislocalization is a key initial step in neurodegeneration, regardless of etiology, and has been linked to changes in the dynamic addition of saturated fatty acids to proteins, a process known as S-acylation. With the advent of new techniques to study S-acylation and the recent discovery of new enzymes that facilitate protein deacylation, novel small molecules are emerging as potential new therapeutic treatments. Huntington disease (HD) is a devastating, fatal neurodegenerative disease characterized by motor, cognitive, and psychiatric deficits caused by a CAG repeat expansion in the HTT gene. The protein that is mutated in HD, huntingtin, is less S-acylated which is associated with mutant HTT aggregation and cytotoxicity. Recent exciting findings indicate that restoring S-acylation in HD models using small molecule inhibitors of the deacylation enzymes is protective. Herein, we set out to describe the known roles of S-acylation in HD and how it can be targeted for therapeutic design.


Subject(s)
Huntingtin Protein , Huntington Disease , Huntington Disease/metabolism , Huntington Disease/drug therapy , Humans , Acylation , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Animals , Fatty Acids/metabolism
5.
Inorg Chem ; 63(11): 4819-4827, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38437739

ABSTRACT

Progress toward the closure of the nuclear fuel cycle can be achieved if satisfactory separation strategies for the chemoselective speciation of the trivalent actinides from the lanthanides are realized in a nonproliferative manner. Since Kolarik's initial report on the utility of bis-1,2,4-triazinyl-2,6-pyridines (BTPs) in 1999, a perfect complexant-based, liquid-liquid separation system has yet to be realized. In this report, a comprehensive performance assessment for the separation of 241Am3+ from 154Eu3+ as a model system for spent nuclear fuel using hydrocarbon-actuated alkoxy-BTP complexants is described. These newly discovered complexants realize gains that contemporary aryl-substituted BTPs have yet to achieve, specifically: long-term stability in highly concentrated nitric acid solutions relevant to the low pH of unprocessed spent nuclear fuel, high DAm over DEu in the economical, nonpolar diluent Exxal-8, and the demonstrated capacity to complete the separation cycle with high efficiency by depositing the chelated An3+ to the aqueous layer via decomplexation of the metal-ligand complex. These soft-N-donor BTPs are hypothesized to function as bipolar complexants, effectively traversing the organic/aqueous interface for effective chelation and bound metal/ligand complex solubility. Complexant design, separation assays, spectroscopic analysis, single-crystal X-ray crystallographic data, and DFT calculations are reported.

6.
J Immunol ; 212(8): 1381-1391, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38416029

ABSTRACT

Granzymes are a family of proteases used by CD8 T cells to mediate cytotoxicity and other less-defined activities. The substrate and mechanism of action of many granzymes are unknown, although they diverge among the family members. In this study, we show that mouse CD8+ tumor-infiltrating lymphocytes (TILs) express a unique array of granzymes relative to CD8 T cells outside the tumor microenvironment in multiple tumor models. Granzyme F was one of the most highly upregulated genes in TILs and was exclusively detected in PD1/TIM3 double-positive CD8 TILs. To determine the function of granzyme F and to improve the cytotoxic response to leukemia, we constructed chimeric Ag receptor T cells to overexpress a single granzyme, granzyme F or the better-characterized granzyme A or B. Using these doubly recombinant T cells, we demonstrated that granzyme F expression improved T cell-mediated cytotoxicity against target leukemia cells and induced a form of cell death other than chimeric Ag receptor T cells expressing only endogenous granzymes or exogenous granzyme A or B. However, increasing expression of granzyme F also had a detrimental impact on the viability of the host T cells, decreasing their persistence in circulation in vivo. These results suggest a unique role for granzyme F as a marker of terminally differentiated CD8 T cells with increased cytotoxicity, but also increased self-directed cytotoxicity, suggesting a potential mechanism for the end of the terminal exhaustion pathway.


Subject(s)
Leukemia , Receptors, Chimeric Antigen , Animals , Mice , CD8-Positive T-Lymphocytes , Granzymes , Leukemia/metabolism , Receptors, Chimeric Antigen/metabolism , Tumor Microenvironment , Cytotoxicity, Immunologic
7.
J Control Release ; 367: 27-44, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215984

ABSTRACT

Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.


Subject(s)
Huntington Disease , Oligonucleotides, Antisense , Mice , Animals , Oligonucleotides, Antisense/therapeutic use , Apolipoprotein A-I/genetics , Huntington Disease/drug therapy , Huntington Disease/genetics , Oligonucleotides/therapeutic use , Brain/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/therapeutic use , Disease Models, Animal
9.
Nat Commun ; 14(1): 7098, 2023 11 04.
Article in English | MEDLINE | ID: mdl-37925424

ABSTRACT

During infection, virus-specific CD8+ T cells undergo rapid bursts of proliferation and differentiate into effector cells that kill virus-infected cells and reduce viral load. This rapid clonal expansion can put T cells at significant risk for replication-induced DNA damage. Here, we find that c-Myc links CD8+ T cell expansion to DNA damage response pathways though the E3 ubiquitin ligase, Cullin 4b (Cul4b). Following activation, c-Myc increases the levels of Cul4b and other members of the Cullin RING Ligase 4 (CRL4) complex. Despite expressing c-Myc at high levels, Cul4b-deficient CD8+ T cells do not expand and clear the Armstrong strain of lymphocytic choriomeningitis virus (LCMV) in vivo. Cul4b-deficient CD8+ T cells accrue DNA damage and succumb to proliferative catastrophe early after antigen encounter. Mechanistically, Cul4b knockout induces an accumulation of p21 and Cyclin E2, resulting in replication stress. Our data show that c-Myc supports cell proliferation by maintaining genome stability via Cul4b, thereby directly coupling these two interdependent pathways. These data clarify how CD8+ T cells use c-Myc and Cul4b to sustain their potential for extraordinary population expansion, longevity and antiviral responses.


Subject(s)
CD8-Positive T-Lymphocytes , Cullin Proteins , Lymphocytic choriomeningitis virus , Proto-Oncogene Proteins c-myc , CD8-Positive T-Lymphocytes/immunology , Cell Cycle , Cullin Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Proto-Oncogene Proteins c-myc/metabolism
10.
Nature ; 622(7984): 707-711, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37579792

ABSTRACT

During the first 500 million years of cosmic history, the first stars and galaxies formed, seeding the Universe with heavy elements and eventually reionizing the intergalactic medium1-3. Observations with the James Webb Space Telescope (JWST) have uncovered a surprisingly high abundance of candidates for early star-forming galaxies, with distances (redshifts, z), estimated from multiband photometry, as large as z ≈ 16, far beyond pre-JWST limits4-9. Although such photometric redshifts are generally robust, they can suffer from degeneracies and occasionally catastrophic errors. Spectroscopic measurements are required to validate these sources and to reliably quantify physical properties that can constrain galaxy formation models and cosmology10. Here we present JWST spectroscopy that confirms redshifts for two very luminous galaxies with z > 11, and also demonstrates that another candidate with suggested z ≈ 16 instead has z = 4.9, with an unusual combination of nebular line emission and dust reddening that mimics the colours expected for much more distant objects. These results reinforce evidence for the early, rapid formation of remarkably luminous galaxies while also highlighting the necessity of spectroscopic verification. The large abundance of bright, early galaxies may indicate shortcomings in current galaxy formation models or deviations from physical properties (such as the stellar initial mass function) that are generally believed to hold at later times.

11.
Am J Respir Cell Mol Biol ; 69(5): 584-591, 2023 11.
Article in English | MEDLINE | ID: mdl-37523713

ABSTRACT

Prostaglandin E2 imparts diverse physiological effects on multiple airway cells through its actions on four distinct E-type prostanoid (EP) receptor subtypes (EP1-EP4). Gs-coupled EP2 and EP4 receptors are expressed on airway smooth muscle (ASM), yet their capacity to regulate the ASM contractile state remains subject to debate. We used EP2 and EP4 subtype-specific agonists (ONO-259 and ONO-329, respectively) in cell- and tissue-based models of human ASM contraction-magnetic twisting cytometry (MTC), and precision-cut lung slices (PCLSs), respectively-to study the EP2 and EP4 regulation of ASM contraction and signaling under conditions of histamine or methacholine (MCh) stimulation. ONO-329 was superior (<0.05) to ONO-259 in relaxing MCh-contracted PCLSs (log half maximal effective concentration [logEC50]: 4.9 × 10-7 vs. 2.2 × 10-6; maximal bronchodilation ± SE, 35 ± 2% vs. 15 ± 2%). However, ONO-259 and ONO-329 were similarly efficacious in relaxing histamine-contracted PCLSs. Similar differential effects were observed in MTC studies. Signaling analyses revealed only modest differences in ONO-329- and ONO-259-induced phosphorylation of the protein kinase A substrates VASP and HSP20, with concomitant stimulation with MCh or histamine. Conversely, ONO-259 failed to inhibit MCh-induced phosphorylation of the regulatory myosin light chain (pMLC20) and the F-actin/G-actin ratio (F/G-actin ratio) while effectively inhibiting their induction by histamine. ONO-329 was effective in reversing induced pMLC20 and the F/G-actin ratio with both MCh and histamine. Thus, the contractile-agonist-dependent differential effects are not explained by changes in the global levels of phosphorylated protein kinase A substrates but are reflected in the regulation of pMLC20 (cross-bridge cycling) and F/G-actin ratio (actin cytoskeleton integrity, force transmission), implicating a role for compartmentalized signaling involving muscarinic, histamine, and EP receptor subtypes.


Subject(s)
Actins , Receptors, Prostaglandin E, EP2 Subtype , Humans , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Histamine/pharmacology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Dinoprostone , Muscle, Smooth/metabolism , Lung/metabolism , Cyclic AMP-Dependent Protein Kinases
12.
J Control Release ; 360: 913-927, 2023 08.
Article in English | MEDLINE | ID: mdl-37468110

ABSTRACT

Lowering mutant huntingtin (mHTT) in the central nervous system (CNS) using antisense oligonucleotides (ASOs) is a promising approach currently being evaluated in clinical trials for Huntington disease (HD). However, the therapeutic potential of ASOs in HD patients is limited by their inability to cross the blood-brain barrier (BBB). In non-human primates, intrathecal infusion of ASOs results in limited brain distribution, with higher ASO concentrations in superficial regions and lower concentrations in deeper regions, such as the basal ganglia. To address the need for improved delivery of ASOs to the brain, we are evaluating the therapeutic potential of apolipoprotein A-I nanodisks (apoA-I NDs) as novel delivery vehicles for mHTT-lowering ASOs to the CNS after intranasal administration. Here, we have demonstrated the ability of apoA-I nanodisks to bypass the BBB after intranasal delivery in the BACHD model of HD. Following intranasal administration of apoA-I NDs, apoA-I protein levels were elevated along the rostral-caudal brain axis, with highest levels in the most rostral brain regions including the olfactory bulb and frontal cortex. Double-label immunohistochemistry indicates that both the apoA-I and ASO deposit in neurons. Most importantly, a single intranasal dose of apoA-I ASO-NDs significantly reduces mHTT levels in the brain regions most affected in HD, namely the cortex and striatum. This approach represents a novel non-invasive means for improving delivery and brain distribution of oligonucleotide therapies and enhancing likelihood of efficacy. Improved ASO delivery to the brain has widespread application for treatment of many other CNS disorders.


Subject(s)
Huntington Disease , Oligonucleotides, Antisense , Animals , Oligonucleotides, Antisense/therapeutic use , Apolipoprotein A-I/genetics , Brain/metabolism , Blood-Brain Barrier/metabolism , Huntington Disease/drug therapy , Huntington Disease/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism
13.
iScience ; 26(6): 106884, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37378320

ABSTRACT

Seeking to discern the earliest sex differences in language-related activities, our focus is vocal activity in the first two years of life, following up on recent research that unexpectedly showed boys produced significantly more speech-like vocalizations (protophones) than girls during the first year of life.We now bring a much larger body of data to bear on the comparison of early sex differences in vocalization, data based on automated analysis of all-day recordings of infants in their homes. The new evidence, like that of the prior study, also suggests boys produce more protophones than girls in the first year and offers additional basis for informed speculation about biological reasons for these differences. More broadly, the work offers a basis for informed speculations about foundations of language that we propose to have evolved in our distant hominin ancestors, foundations also required in early vocal development of modern human infants.

14.
Front Physiol ; 14: 1166125, 2023.
Article in English | MEDLINE | ID: mdl-37324388

ABSTRACT

One of the first molecular events in neurodegenerative diseases, regardless of etiology, is protein mislocalization. Protein mislocalization in neurons is often linked to proteostasis deficiencies leading to the build-up of misfolded proteins and/or organelles that contributes to cellular toxicity and cell death. By understanding how proteins mislocalize in neurons, we can develop novel therapeutics that target the earliest stages of neurodegeneration. A critical mechanism regulating protein localization and proteostasis in neurons is the protein-lipid modification S-acylation, the reversible addition of fatty acids to cysteine residues. S-acylation is more commonly referred to as S-palmitoylation or simply palmitoylation, which is the addition of the 16-carbon fatty acid palmitate to proteins. Like phosphorylation, palmitoylation is highly dynamic and tightly regulated by writers (i.e., palmitoyl acyltransferases) and erasers (i.e., depalmitoylating enzymes). The hydrophobic fatty acid anchors proteins to membranes; thus, the reversibility allows proteins to be re-directed to and from membranes based on local signaling factors. This is particularly important in the nervous system, where axons (output projections) can be meters long. Any disturbance in protein trafficking can have dire consequences. Indeed, many proteins involved in neurodegenerative diseases are palmitoylated, and many more have been identified in palmitoyl-proteomic studies. It follows that palmitoyl acyl transferase enzymes have also been implicated in numerous diseases. In addition, palmitoylation can work in concert with cellular mechanisms, like autophagy, to affect cell health and protein modifications, such as acetylation, nitrosylation, and ubiquitination, to affect protein function and turnover. Limited studies have further revealed a sexually dimorphic pattern of protein palmitoylation. Therefore, palmitoylation can have wide-reaching consequences in neurodegenerative diseases.

15.
Respir Res ; 24(1): 157, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316833

ABSTRACT

BACKGROUND: The recruitment of the actin-regulatory proteins cortactin and profilin-1 (Pfn-1) to the membrane is important for the regulation of actin cytoskeletal reorganization and smooth muscle contraction. Polo-like kinase 1 (Plk1) and the type III intermediate filament protein vimentin are involved in smooth muscle contraction. Regulation of complex cytoskeletal signaling is not entirely elucidated. The aim of this study was to evaluate the role of nestin (a type VI intermediate filament protein) in cytoskeletal signaling in airway smooth muscle. METHODS: Nestin expression in human airway smooth muscle (HASM) was knocked down by specific shRNA or siRNA. The effects of nestin knockdown (KD) on the recruitment of cortactin and Pfn-1, actin polymerization, myosin light chain (MLC) phosphorylation, and contraction were evaluated by cellular and physiological approaches. Moreover, we assessed the effects of non-phosphorylatable nestin mutant on these biological processes. RESULTS: Nestin KD reduced the recruitment of cortactin and Pfn-1, actin polymerization, and HASM contraction without affecting MLC phosphorylation. Moreover, contractile stimulation enhanced nestin phosphorylation at Thr-315 and the interaction of nestin with Plk1. Nestin KD also diminished phosphorylation of Plk1 and vimentin. The expression of T315A nestin mutant (alanine substitution at Thr-315) reduced the recruitment of cortactin and Pfn-1, actin polymerization, and HASM contraction without affecting MLC phosphorylation. Furthermore, Plk1 KD diminished nestin phosphorylation at this residue. CONCLUSIONS: Nestin is an essential macromolecule that regulates actin cytoskeletal signaling via Plk1 in smooth muscle. Plk1 and nestin form an activation loop during contractile stimulation.


Subject(s)
Actins , Cortactin , Humans , Nestin/genetics , Vimentin , Cortactin/genetics , Cytoskeleton
16.
Am Surg ; 89(9): 3820-3821, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37243531

ABSTRACT

Abdominal aortic aneurysm (AAA) is a common medical condition with the feared, and often fatal, complication of rupture. The risk of rupture has been well documented to correlate with aneurysm size. It is exceedingly rare for an AAA less than 5 cm to rupture. This case report demonstrates an asymptomatic 4.3 cm AAA that ruptured while admitted to the hospital with COVID-19 pneumonia. The patient was successfully managed with an endovascular aortoiliac stent graft. Although rare, in patients with small AAA, rupture must remain in the differential diagnosis in the setting of acute onset abdominal or back pain. Furthermore, when quickly recognized, these patients can be safely managed with an endovascular approach.


Subject(s)
Aortic Aneurysm, Abdominal , Aortic Rupture , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Humans , Aortic Rupture/diagnostic imaging , Aortic Rupture/etiology , Aortic Rupture/surgery , Aortic Aneurysm, Abdominal/complications , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/surgery , Stents/adverse effects , Aorta , Endovascular Procedures/adverse effects , Blood Vessel Prosthesis Implantation/adverse effects , Treatment Outcome , Risk Factors
17.
Ecol Lett ; 26(7): 1237-1246, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37161930

ABSTRACT

Fire-vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.


Subject(s)
Ecosystem , Fires , Grassland , Trees/physiology , Forests , Climate
18.
J Parasitol ; 109(2): 51-55, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36881747

ABSTRACT

For several decades, green treefrogs (Hyla cinerea) have been undergoing rapid range expansion northward and eastward in Illinois, Indiana, and Kentucky. While range expansion of green treefrogs in these states may be linked to climate change, a recent study suggested this expansion could be facilitated by parasites, given that expanded range populations of green treefrogs from Kentucky and Indiana exhibited significant decreases in helminth species diversity compared to those examined from historical locations of Kentucky. Because rapid range expansion may lead to hosts escaping their parasites (= parasite release), a reprieve from parasitic infection could allocate additional resources to growth and reproduction and thus facilitate the expansion. The present study compares patterns of helminth diversity for green treefrogs from historical and 2 types (early and late expansion) of expanded range locations of southern Illinois to test whether these range-expansion populations are also experiencing a reduction in parasitism due to parasite release. The results of this study did not find significant differences in helminth diversity when helminth communities of green treefrogs from their historical and expanded ranges were compared. These results appear to downplay the putative role of parasite release in the northward range expansion of H. cinerea in Illinois. Studies are underway to determine whether local factors, including abiotic conditions and amphibian host diversity, play a more prominent role in influencing helminth diversity of green treefrogs.


Subject(s)
Parasites , Animals , Anura , Climate Change , Illinois/epidemiology , Indiana
19.
Cells ; 12(6)2023 03 12.
Article in English | MEDLINE | ID: mdl-36980223

ABSTRACT

Airway smooth muscle (ASM) was first described in 1804 by Franz Daniel Reisseisen (as related by Otis (1983)) [...].


Subject(s)
Asthma , Humans , Muscle, Smooth , Respiratory System , Airway Remodeling
20.
Appl Radiat Isot ; 194: 110712, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36764223

ABSTRACT

Accurately counting analog events requires constructing an electronics chain that produces one count for each input pulse. In this work we review the use of Nuclear Instrumentation Module electronic units for counting neutron capture events in a 3He tube. We identify two unique types of false trigger events in a leading-edge discriminator and show how a dual timer module can be used to produce a veto window to exclude these events. We use the constructed electronics chain to build an apparatus to measure neutron pulses from a 252Cf neutron source. We compare the measurements with a Monte Carlo N-Particle (MCNP) model to determine the activity of the neutron source. Furthermore, by making additional measurements with borated polyethylene attenuators between the source and detector, we are able to determine the boron concentration of the polyethylene. This technique provides accurate determination of the source activity to a precision of 2.8% at the k = 1 level. The method used is simple, inexpensive, and requires no additional calibrated instruments.

SELECTION OF CITATIONS
SEARCH DETAIL
...