Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 14(12): 1692-1699, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116445

ABSTRACT

We have developed a chiral route toward the synthesis of muscarinic M4 agonists that was enabled by the biocatalytic synthesis of the key spirocyclic diamine building blocks 10 and 12. Using these bifunctional compounds we were able to optimize a synthetic sequence toward a collection of advanced intermediates for further elaboration. These advanced intermediates were then used as starting points for early medicinal chemistry and the identification of selective M1/M4 agonists.

2.
Mol Ther Nucleic Acids ; 28: 558-570, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35592494

ABSTRACT

A large hexanucleotide (G4C2) repeat expansion in the first intronic region of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Several mechanisms have been proposed to explain how the repeat expansion drives disease, and we hypothesize that a variant-selective approach, in which transcripts affected by the repeat expansion are preferentially decreased, has the potential to address most of them. We report a stereopure antisense oligonucleotide, WVE-004, that executes this variant-selective mechanism of action. WVE-004 dose-dependently and selectively reduces repeat-containing transcripts in patient-derived motor neurons carrying a C9orf72-repeat expansion, as well as in the spinal cord and cortex of C9 BAC transgenic mice. In mice, selective transcript knockdown was accompanied by substantial decreases in dipeptide-repeat proteins, which are pathological biomarkers associated with the repeat expansion, and by preservation of healthy C9orf72 protein expression. These in vivo effects were durable, persisting for at least 6 months. These data support the advancement of WVE-004 as an investigational stereopure antisense oligonucleotide targeting C9orf72 for the treatment of C9orf72-associated ALS or FTD.

3.
Nucleic Acids Res ; 50(10): 5401-5423, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35106589

ABSTRACT

Attaining sufficient tissue exposure at the site of action to achieve the desired pharmacodynamic effect on a target is an important determinant for any drug discovery program, and this can be particularly challenging for oligonucleotides in deep tissues of the CNS. Herein, we report the synthesis and impact of stereopure phosphoryl guanidine-containing backbone linkages (PN linkages) to oligonucleotides acting through an RNase H-mediated mechanism, using Malat1 and C9orf72 as benchmarks. We found that the incorporation of various types of PN linkages to a stereopure oligonucleotide backbone can increase potency of silencing in cultured neurons under free-uptake conditions 10-fold compared with similarly modified stereopure phosphorothioate (PS) and phosphodiester (PO)-based molecules. One of these backbone types, called PN-1, also yielded profound silencing benefits throughout the mouse brain and spinal cord at low doses, improving both the potency and durability of response, especially in difficult to reach brain tissues. Given these benefits in preclinical models, the incorporation of PN linkages into stereopure oligonucleotides with chimeric backbone modifications has the potential to render regions of the brain beyond the spinal cord more accessible to oligonucleotides and, consequently, may also expand the scope of neurological indications amenable to oligonucleotide therapeutics.


In this study, the authors explore the impact of nitrogen-containing (PN) backbones on oligonucleotides that promote RNase H-mediated degradation of a transcript in the central nervous system (CNS). Using Malat1, a ubiquitously expressed non-coding RNA that is predominately localized in the nucleus, and C9orf72, a challenging RNA target requiring a more nuanced targeting strategy, as benchmarks, they show that chimeric oligonucleotides containing stereopure PS and one of the more promising PN backbones (PN-1) have more potent and durable activity throughout the CNS compared with more traditional PS-modified molecules in mouse models. They demonstrate that potency and durability benefits in vivo derive at least in part from increased tissue exposure, especially in more difficult to reach regions of the brain. Ultimately, these benefits enabled the authors to demonstrate pharmacodynamic effects on Malat1 and C9orf72 RNAs in multiple brain regions with relatively low doses.


Subject(s)
Oligonucleotides, Antisense , Animals , Cells, Cultured , Central Nervous System , Guanidine/chemistry , Mice , Neurons/drug effects , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacology , Phosphorothioate Oligonucleotides , Ribonuclease H/metabolism
4.
J Med Chem ; 64(8): 4891-4902, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33822617

ABSTRACT

There remains an insufficient number of P2X7 receptor antagonists with adequate rodent potency, CNS permeability, and pharmacokinetic properties from which to evaluate CNS disease hypotheses preclinically. Herein, we describe the molecular pharmacology, safety, pharmacokinetics, and functional CNS target engagement of Lu AF27139, a novel rodent-active and CNS-penetrant P2X7 receptor antagonist. Lu AF27139 is highly selective and potent against rat, mouse, and human forms of the receptors. The rat pharmacokinetic profile is favorable with high oral bioavailability, modest clearance (0.79 L/(h kg)), and good CNS permeability. In vivo mouse CNS microdialysis studies of lipopolysaccharide (LPS)-primed and 2'(3')-O-(benzoylbenzoyl)adenosine-5'-triphosphate (BzATP)-induced IL-1ß release demonstrate functional CNS target engagement. Importantly, Lu AF27139 was without effect in standard in vitro and in vivo toxicity studies. Based on these properties, we believe Lu AF27139 will be a valuable tool for probing the role of the P2X7 receptor in rodent models of CNS diseases.


Subject(s)
Central Nervous System/metabolism , Purinergic P2X Receptor Antagonists/chemical synthesis , Receptors, Purinergic P2X7/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Cell Line , Central Nervous System/drug effects , Dogs , Female , Half-Life , Humans , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Microglia/cytology , Microglia/drug effects , Microglia/metabolism , Microsomes, Liver/metabolism , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism , Purinergic P2X Receptor Antagonists/metabolism , Purinergic P2X Receptor Antagonists/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2X7/chemistry
5.
Brain Res ; 1689: 1-11, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29274875

ABSTRACT

The multimodal antidepressant vortioxetine is thought to mediate its pharmacological effects via 5-HT1A receptor agonism, 5-HT1B receptor partial agonism, 5-HT1D, 5-HT3, 5-HT7 receptor antagonism and 5-HT transporter inhibition. Here we studied vortioxetine's functional effects across species (canine, mouse, rat, guinea pig and human) in cellular assays with heterologous expression of 5-HT3A receptors (in Xenopus oocytes and HEK-293 cells) and in mouse neuroblastoma N1E-115 cells with endogenous expression of 5-HT3A receptors. Furthermore, we studied the effects of vortioxetine on activity of CA1 Stratum Radiatum interneurons in rat hippocampus slices using current- and voltage-clamping methods. The patched neurons were subsequently filled with biocytin for confirmation of 5-HT3 receptor mRNA expression by in situ hybridization. Whereas, both vortioxetine and the 5-HT3 receptor antagonist ondansetron potently antagonized 5-HT-induced currents in the cellular assays, vortioxetine had a slower off-rate than ondansetron in oocytes expressing 5-HT3A receptors. Furthermore, vortioxetine's but not ondansetron's 5-HT3 receptor antagonistic potency varied considerably across species. Vortioxetine had the highest potency at rat and the lowest potency at guinea pig 5-HT3A receptors. Finally, in 5-HT3 receptor-expressing GABAergic interneurons from the CA1 stratum radiatum, vortioxetine and ondansetron blocked depolarizations induced by superfusion of either 5-HT or the 5-HT3 receptor agonist mCPBG. Taken together, these data add to a growing literature supporting the idea that vortioxetine may inhibit GABAergic neurotransmission in some brain regions via a 5-HT3 receptor antagonism-dependent mechanism and thereby disinhibit pyramidal neurons and enhance glutamatergic signaling.


Subject(s)
Action Potentials/drug effects , Antidepressive Agents/pharmacology , Interneurons/drug effects , Pyramidal Cells/drug effects , Serotonin 5-HT3 Receptor Antagonists/pharmacology , Vortioxetine/pharmacology , Action Potentials/physiology , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Dogs , Glutamic Acid/metabolism , Guinea Pigs , HEK293 Cells , Humans , Interneurons/metabolism , Mice , Ondansetron/pharmacology , Oocytes , Pyramidal Cells/metabolism , Rats , Receptors, Serotonin, 5-HT3/metabolism , Serotonin/metabolism , Tissue Culture Techniques , Xenopus laevis , gamma-Aminobutyric Acid/metabolism
6.
Front Pharmacol ; 8: 764, 2017.
Article in English | MEDLINE | ID: mdl-29123483

ABSTRACT

Prefrontal-subcortical circuits support executive functions which often become dysfunctional in psychiatric disorders. Vortioxetine is a multimodal antidepressant that is currently used in the clinic to treat major depressive disorder. Mechanisms of action of vortioxetine include serotonin (5-HT) transporter blockade, 5-HT1A receptor agonism, 5-HT1B receptor partial agonism, and 5-HT1D, 5-HT3, and 5-HT7 receptor antagonism. Vortioxetine facilitates 5-HT transmission in the medial prefrontal cortex (mPFC), however, the impact of this compound on related prefrontal-subcortical circuits is less clear. Thus, the current study examined the impact of systemic vortioxetine administration (0.8 mg/kg, i.v.) on spontaneous spiking and spikes evoked by electrical stimulation of the mPFC in the anterior cingulate cortex (ACC), medial shell of the nucleus accumbens (msNAc), and lateral septal nucleus (LSN) in urethane-anesthetized rats. We also examined whether vortioxetine modulated afferent drive in the msNAc from hippocampal fimbria (HF) inputs. Similar studies were performed using the selective 5-HT reuptake inhibitor [selective serotonin reuptake inhibitors (SSRI)] escitalopram (1.6 mg/kg, i.v.) to enable comparisons between the multimodal actions of vortioxetine and SSRI-mediated effects. No significant differences in spontaneous activity were observed in the ACC, msNAc, and LSN across treatment groups. No significant impact of treatment on mPFC-evoked responses was observed in the ACC. In contrast, vortioxetine decreased mPFC-evoked activity recorded in the msNAc as compared to parallel studies in control and escitalopram treated groups. Thus, vortioxetine may reduce mPFC-msNAc afferent drive via a mechanism that, in addition to an SSRI-like effect, requires 5-HT receptor modulation. Recordings in the LSN revealed a significant increase in mPFC-evoked activity following escitalopram administration as compared to control and vortioxetine treated groups, indicating that complex modulation of 5-HT receptors by vortioxetine may offset SSRI-like effects in this region. Lastly, neurons in the msNAc were more responsive to stimulation of the HF following both vortioxetine and escitalopram administration, indicating that elevation of 5-HT tone and 5-HT receptor modulation may facilitate excitatory hippocampal synaptic drive in this region. The above findings point to complex 5-HT receptor-dependent effects of vortioxetine which may contribute to its unique impact on the function of prefrontal-subcortical circuits and the development of novel strategies for treating mood disorders.

7.
J Psychopharmacol ; 31(3): 365-376, 2017 03.
Article in English | MEDLINE | ID: mdl-27678087

ABSTRACT

Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies. In rodent studies, vortioxetine increases glutamate neurotransmission, promotes dendritic branching and spine maturation, and elevates hippocampal expression of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) at the transcript level. The present study aims to assess the effects of vortioxetine on several neuroplasticity-related molecules in different experimental systems. Chronic (1 month) vortioxetine increased Arc/Arg3.1 protein levels in the cortical synaptosomes of young and middle-aged mice. In young mice, this was accompanied by an increase in actin-depolymerizing factor (ADF)/cofilin serine 3 phosphorylation without altering the total ADF/cofilin protein level, and an increase in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor phosphorylation at serine 845 (S845) without altering serine 831 (S831) GluA1 phosphorylation nor the total GluA1 protein level. Similar effects were detected in cultured rat hippocampal neurons: Acute vortioxetine increased S845 GluA1 phosphorylation without changing S831 GluA1 phosphorylation or the total GluA1 protein level. These changes were accompanied by an increase in α subunit of Ca2+/calmodulin-dependent kinase (CaMKIIα) phosphorylation (at threonine 286) without changing the total CaMKIIα protein level in cultured neurons. In addition, chronic (1 month) vortioxetine, but not fluoxetine, restored the age-associated reduction in Arc/Arg3.1 and c-Fos transcripts in the frontal cortex of middle-aged mice. Taken together, these results demonstrated that vortioxetine modulates molecular targets that are related to neuroplasticity.


Subject(s)
Neuronal Plasticity/drug effects , Piperazines/pharmacology , Sulfides/pharmacology , Animals , Antidepressive Agents/pharmacology , Cytoskeletal Proteins/metabolism , Female , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Serine/metabolism , Vortioxetine
8.
Eur J Pharmacol ; 795: 1-7, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27876619

ABSTRACT

Neuropathic pain is a debilitating, chronic condition with a significant unmet need for effective treatment options. Recent studies have demonstrated that in addition to neurons, non-neuronal cells such as microglia contribute to the initiation and maintenance of allodynia in rodent models of neuropathic pain. The Ca2+- activated K+ channel, KCa3.1 is critical for the activation of immune cells, including the CNS-resident microglia. In order to evaluate the role of KCa3.1 in the maintenance of mechanical allodynia following peripheral nerve injury, we used senicapoc, a stable and highly potent KCa3.1 inhibitor. In primary cultured microglia, senicapoc inhibited microglial nitric oxide and IL-1ß release. In vivo, senicapoc showed high CNS penetrance and when administered to rats with peripheral nerve injury, it significantly reversed tactile allodynia similar to the standard of care, gabapentin. In contrast to gabapentin, senicapoc achieved efficacy without any overt impact on locomotor activity. Together, the data demonstrate that the KCa3.1 inhibitor senicapoc is effective at reducing mechanical hypersensitivity in a rodent model of peripheral nerve injury.


Subject(s)
Acetamides/pharmacology , Hyperalgesia/complications , Hyperalgesia/drug therapy , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Peripheral Nerve Injuries/complications , Potassium Channel Blockers/pharmacology , Trityl Compounds/pharmacology , Acetamides/adverse effects , Acetamides/pharmacokinetics , Acetamides/therapeutic use , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Drug Stability , Humans , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Locomotion/drug effects , Microglia/drug effects , Microglia/metabolism , Potassium/metabolism , Potassium Channel Blockers/adverse effects , Potassium Channel Blockers/pharmacokinetics , Potassium Channel Blockers/therapeutic use , Rats , Trityl Compounds/adverse effects , Trityl Compounds/pharmacokinetics , Trityl Compounds/therapeutic use
9.
Sci Rep ; 6: 32553, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27581852

ABSTRACT

The oligomeric amyloid-ß (Aß) peptide is thought to contribute to the subtle amnesic changes in Alzheimer's disease (AD) by causing synaptic dysfunction. Here, we examined the time course of synaptic changes in mouse hippocampal neurons following exposure to Aß42 at picomolar concentrations, mimicking its physiological levels in the brain. We found opposite effects of the peptide with short exposures in the range of minutes enhancing synaptic plasticity, and longer exposures lasting several hours reducing it. The plasticity reduction was concomitant with an increase in the basal frequency of spontaneous neurotransmitter release, a higher basal number of functional presynaptic release sites, and a redistribution of synaptic proteins including the vesicle-associated proteins synapsin I, synaptophysin, and the post-synaptic glutamate receptor I. These synaptic alterations were mediated by cytoskeletal changes involving actin polymerization and p38 mitogen-activated protein kinase. These in vitro findings were confirmed in vivo with short hippocampal infusions of picomolar Aß enhancing contextual memory and prolonged infusions impairing it. Our findings provide a model for initiation of synaptic dysfunction whereby exposure to physiologic levels of Aß for a prolonged period of time causes microstructural changes at the synapse which result in increased transmitter release, failure of synaptic plasticity, and memory loss.


Subject(s)
Alzheimer Disease/diagnosis , Amyloid beta-Peptides/pharmacology , Memory Disorders/diagnosis , Neuronal Plasticity/drug effects , Neurons/drug effects , Peptide Fragments/pharmacology , Synaptic Transmission/drug effects , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Animals , Animals, Newborn , Disease Models, Animal , Gene Expression Regulation , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Humans , Memory Disorders/genetics , Memory Disorders/metabolism , Memory Disorders/physiopathology , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , Patch-Clamp Techniques , Presynaptic Terminals/drug effects , Primary Cell Culture , Protein Multimerization , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Synapses/drug effects , Synapsins/genetics , Synapsins/metabolism , Synaptophysin/genetics , Synaptophysin/metabolism , Time Factors , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Glia ; 64(10): 1788-94, 2016 10.
Article in English | MEDLINE | ID: mdl-27246804

ABSTRACT

Minocycline, a second generation broad-spectrum antibiotic, has been frequently postulated to be a "microglia inhibitor." A considerable number of publications have used minocycline as a tool and concluded, after achieving a pharmacological effect, that the effect must be due to "inhibition" of microglia. It is, however, unclear how this "inhibition" is achieved at the molecular and cellular levels. Here, we weigh the evidence whether minocycline is indeed a bona fide microglia inhibitor and discuss how data generated with minocycline should be interpreted. GLIA 2016;64:1788-1794.


Subject(s)
Anti-Bacterial Agents/pharmacology , Microglia/drug effects , Minocycline/pharmacology , Animals , Anti-Bacterial Agents/therapeutic use , Databases, Factual/statistics & numerical data , Humans , Microglia/physiology , Minocycline/therapeutic use
11.
Article in English | MEDLINE | ID: mdl-27262695

ABSTRACT

A single i.v. infusion of ketamine, classified as an N-methyl-d-aspartate (NMDA) receptor antagonist, may alleviate depressive symptoms within hours of administration in treatment resistant depressed patients, and the antidepressant effect may last for several weeks. These unique therapeutic properties have prompted researchers to explore the mechanisms mediating the antidepressant effects of ketamine, but despite many efforts, no consensus on its antidepressant mechanism of action has been reached. Recent preclinical reports have associated the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) with the antidepressant-like action of ketamine. Here, we review the current evidence for a serotonergic role in ketamine's antidepressant effects. The pharmacological profile of ketamine may include equipotent activity on several non-NMDA targets, and the current hypotheses for the mechanisms responsible for ketamine's antidepressant activity do not appear to preclude the possibility that non-glutamate neurotransmitters are involved in the antidepressant effects. At multiple levels, the serotonergic and glutamatergic systems interact, and such crosstalk could support the notion that changes in serotonergic neurotransmission may impact ketamine's antidepressant potential. In line with these prospects, ketamine may increase 5-HT levels in the prefrontal cortex of rats, plausibly via hippocampal NMDA receptor inhibition and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In addition, a number of preclinical studies suggest that the antidepressant-like effects of ketamine may depend on endogenous activation of 5-HT receptors. Recent imaging and behavioral data predominantly support a role for 5-HT1A or 5-HT1B receptors, but the full range of 5-HT receptors has currently not been systematically investigated in this context. Furthermore, the nature of any 5-HT dependent mechanism in ketamine's antidepressant effect is currently not understood, and therefore, more studies are warranted to confirm this hypothesis and explore the specific pathways that might implicate 5-HT.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Ketamine/therapeutic use , Serotonin/metabolism , Signal Transduction/drug effects , Animals , Depression/metabolism , Humans
12.
Glia ; 64(10): 1733-41, 2016 10.
Article in English | MEDLINE | ID: mdl-27121595

ABSTRACT

Over the past decade, glial cells have attracted attention for harboring unexploited targets for drug discovery. Several glial targets have attracted de novo drug discovery programs, as highlighted in this GLIA Special Issue. Drug repurposing, which has the objective of utilizing existing drugs as well as abandoned, failed, or not yet pursued clinical development candidates for new indications, might provide a faster opportunity to bring drugs for glial targets to patients with unmet needs. Here, we review the potential of the intermediate-conductance calcium-activated potassium channels KCa 3.1 as the target for such a repurposing effort. We discuss the data on KCa 3.1 expression on microglia in vitro and in vivo and review the relevant literature on the two KCa 3.1 inhibitors TRAM-34 and Senicapoc. Finally, we provide an outlook of what it might take to harness the potential of KCa 3.1 as a bona fide microglial drug target. GLIA 2016;64:1733-1741.


Subject(s)
Drug Repositioning , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Microglia/metabolism , Acetamides/chemistry , Acetamides/pharmacology , Acetamides/therapeutic use , Animals , Humans , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Microglia/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Trityl Compounds/chemistry , Trityl Compounds/pharmacology , Trityl Compounds/therapeutic use
13.
CNS Spectr ; 21(2): 143-61, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26346726

ABSTRACT

The hippocampus plays an important role in emotional and cognitive processing, and both of these domains are affected in patients with major depressive disorder (MDD). Extensive preclinical research and the notion that modulation of serotonin (5-HT) neurotransmission plays a key role in the therapeutic efficacy of selective serotonin reuptake inhibitors (SSRIs) support the view that 5-HT is important for hippocampal function in normal and disease-like conditions. The hippocampus is densely innervated by serotonergic fibers, and the majority of 5-HT receptor subtypes are expressed there. Furthermore, hippocampal cells often co-express multiple 5-HT receptor subtypes that can have either complementary or opposing effects on cell function, adding to the complexity of 5-HT neurotransmission. Here we review the current knowledge of how 5-HT, through its various receptor subtypes, modulates hippocampal output and the activity of hippocampal pyramidal cells in rodents. In addition, we discuss the relevance of 5-HT modulation for cognitive processing in rodents and possible clinical implications of these results in patients with MDD. Finally, we review the data on how SSRIs and vortioxetine, an antidepressant with multimodal activity, affect hippocampal function, including cognitive processing, from both a preclinical and clinical perspective.


Subject(s)
Antidepressive Agents/pharmacology , Depressive Disorder, Major/metabolism , Hippocampus/drug effects , Pyramidal Cells/drug effects , Receptors, Serotonin/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin/metabolism , Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Hippocampus/metabolism , Humans , Pyramidal Cells/metabolism , Receptors, Serotonin/metabolism , Selective Serotonin Reuptake Inhibitors/therapeutic use , Synaptic Transmission
14.
Front Neurosci ; 9: 279, 2015.
Article in English | MEDLINE | ID: mdl-26321903

ABSTRACT

Major depressive disorder (MDD) is primarily conceptualized as a mood disorder but cognitive dysfunction is also prevalent, and may limit the daily function of MDD patients. Current theories on MDD highlight disturbances in dendritic plasticity in its pathophysiology, which could conceivably play a role in the production of both MDD-related mood and cognitive symptoms. This paper attempts to review the accumulated knowledge on the basic biology of the activity-regulated cytoskeleton-associated protein (Arc or Arg3.1), its effects on neural plasticity, and how these may be related to mood or cognitive dysfunction in animal models of MDD. On a cellular level, Arc plays an important role in modulating dendritic spine density and remodeling. Arc also has a close, bidirectional relationship with postsynaptic glutamate neurotransmission, since it is stimulated by multiple glutamatergic receptor mechanisms but also modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. The effects on AMPA receptor trafficking are likely related to Arc's ability to modulate phenomena such as long-term potentiation, long-term depression, and synaptic scaling, each of which are important for maintaining proper cognitive function. Chronic stress models of MDD in animals show suppressed Arc expression in the frontal cortex but elevation in the amygdala. Interestingly, cognitive tasks depending on the frontal cortex are generally impaired by chronic stress, while those depending on the amygdala are enhanced, and antidepressant treatments stimulate cortical Arc expression with a timeline that is reminiscent of the treatment efficacy lag observed in the clinic or in preclinical models. However, pharmacological treatments that stimulate regional Arc expression do not universally improve relevant cognitive functions, and this highlights a need to further refine our understanding of Arc on a subcellular and network level.

16.
Biochem Pharmacol ; 95(2): 81-97, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25813654

ABSTRACT

The monoamine hypothesis has been the prevailing hypothesis of depression over the last several decades. It states that depression is associated with reduced monoamine function. Hence efforts to increase monoamine transmission by inhibiting serotonin (5-HT) and norepinephrine (NE) transporters has been a central theme in depression research since the 1960s. The selective 5-HT reuptake inhibitors (SSRIs) and 5-HT and NE reuptake inhibitors (SNRIs) that have emerged from this line of research are currently first line treatment options for major depressive disorder (MDD). One of the recent trends in antidepressant research has been to refine monoaminergic mechanisms by targeting monoaminergic receptors and additional transporters (e.g. with multimodal drugs and triple re-uptake inhibitors) or by adding atypical antipsychotics to SSRI or SNRI treatment. In addition, several other hypotheses of depression have been brought forward in pre-clinical and clinical research based on biological hallmarks of the disease and efficacy of pharmacological interventions. A central strategy has been to target glutamate receptors (for example, with intravenous infusions of the N-methyl-d-aspartate (NMDA) receptor antagonist ketamine). Other strategies have been based on modulation of cholinergic and γ-aminobutyric acid (GABA)ergic transmission, neuronal plasticity, stress/hypothalamic pituitary adrenal(HPA)-axis, the reward system and neuroinflammation. Here we review the pharmacological profiles of compounds that derived from these strategies and have been recently tested in clinical trials with published results. In addition, we discuss putative treatments for depression that are being investigated at the preclinical level and outline future directions for antidepressant research.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Drug Therapy, Combination , Humans , Norepinephrine/metabolism , Selective Serotonin Reuptake Inhibitors/therapeutic use
17.
ACS Chem Neurosci ; 6(7): 970-86, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25746856

ABSTRACT

It has been known for several decades that serotonergic neurotransmission is a key regulator of cognitive function, mood, and sleep. Yet with the relatively recent discoveries of novel serotonin (5-HT) receptor subtypes, as well as an expanding knowledge of their expression level in certain brain regions and localization on certain cell types, their involvement in cognitive processes is still emerging. Of particular interest are cognitive processes impacted in neuropsychiatric and neurodegenerative disorders. The prefrontal cortex (PFC) is critical to normal cognitive processes, including attention, impulsivity, planning, decision-making, working memory, and learning or recall of learned memories. Furthermore, serotonergic dysregulation within the PFC is implicated in many neuropsychiatric disorders associated with prominent symptoms of cognitive dysfunction. Thus, it is important to better understand the overall makeup of serotonergic receptors in the PFC and on which cell types these receptors mediate their actions. In this Review, we focus on 5-HT receptor expression patterns within the PFC and how they influence cognitive behavior and neurotransmission. We further discuss the net effects of vortioxetine, an antidepressant acting through multiple serotonergic targets given the recent findings that vortioxetine improves cognition by modulating multiple neurotransmitter systems.


Subject(s)
Cognition/physiology , Prefrontal Cortex/metabolism , Receptors, Serotonin/metabolism , Animals , Antidepressive Agents/pharmacology , Cognition/drug effects , Humans , Neural Pathways/drug effects , Neural Pathways/metabolism , Piperazines/pharmacology , Prefrontal Cortex/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Sulfides/pharmacology , Vortioxetine
18.
Eur J Pharmacol ; 753: 19-31, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25107284

ABSTRACT

Although major depressive disorder is primarily considered a mood disorder, depressed patients commonly present with clinically significant cognitive dysfunction that may add to their functional disability. This review paper summarizes the available preclinical data on the effects of antidepressants, including monoamine reuptake inhibitors and the multimodal antidepressant vortioxetine, in behavioral tests of cognition such as cognitive flexibility, attention, and memory, or in potentially cognition-relevant mechanistic assays such as electroencephalography, in vivo microdialysis, in vivo or in vitro electrophysiology, and molecular assays related to neurogenesis or synaptic sprouting. The available data are discussed in context with clinically relevant doses and their relationship to target occupancy levels, in order to evaluate the translational relevance of preclinical doses used during testing. We conclude that there is preclinical evidence suggesting that traditional treatment with monoamine reuptake inhibitors can induce improved cognitive function, for example in cognitive flexibility and memory, and that the multimodal-acting antidepressant vortioxetine may have some advantages by comparison to these treatments. However, the translational value of the reviewed preclinical data can be questioned at times, due to the use of doses outside the therapeutically-relevant range, the lack of data on target engagement or exposure, the tendency to investigate acute rather than long term antidepressant administration, and the trend towards using normal rodents rather than models with translational relevance for depression. Finally, several suggestions are made for advancing this field, including expanded use of target occupancy assessments in preclinical and clinical experiments, and the use of translationally valuable techniques such as electroencephalography.


Subject(s)
Antidepressive Agents/pharmacology , Cognition/drug effects , Piperazines/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology , Sulfides/pharmacology , Animals , Vortioxetine
19.
Sci Rep ; 4: 7190, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25448527

ABSTRACT

Learning and memory and the underlying cellular correlate, long-term synaptic plasticity, involve regulation by posttranslational modifications (PTMs). Here we demonstrate that conjugation with the small ubiquitin-like modifier (SUMO) is a novel PTM required for normal synaptic and cognitive functioning. Acute inhibition of SUMOylation impairs long-term potentiation (LTP) and hippocampal-dependent learning. Since Alzheimer's disease (AD) prominently features both synaptic and PTM dysregulation, we investigated SUMOylation under pathology induced by amyloid-ß (Aß), a primary neurotoxic molecule implicated in AD. We observed that SUMOylation is dysregulated in both human AD brain tissue and the Tg2576 transgenic AD mouse model. While neuronal activation normally induced upregulation of SUMOylation, this effect was impaired by Aß42 oligomers. However, supplementing SUMOylation via transduction of its conjugating enzyme, Ubc9, rescued Aß-induced deficits in LTP and hippocampal-dependent learning and memory. Our data establish SUMO as a novel regulator of LTP and hippocampal-dependent cognition and additionally implicate SUMOylation impairments in AD pathogenesis.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Cognition/physiology , Neuronal Plasticity/physiology , SUMO-1 Protein/metabolism , Aged , Aged, 80 and over , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/physiology , Hippocampus/physiopathology , Humans , Long-Term Potentiation/physiology , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Sumoylation/physiology
20.
Curr Top Med Chem ; 14(15): 1755-70, 2014.
Article in English | MEDLINE | ID: mdl-25183417

ABSTRACT

Drug design necessitates a clear understanding of the phenotypic response to be elicited by a given ligandtarget interaction. This relationship is relatively well understood for classical biological targets of drug action, but for some novel targets, notably those amenable to allosteric modulation, developing such understanding may represent a more challenging task. In order to gain knowledge on the nature of the functional response derived from mGlu4 receptor activation, its molecular and cell biology are reviewed, including signalling pathways involved, receptor localization in central nervous system and beyond, and potential genetic links to disease. Broadly held views for both, orthosteric agonists as well as allosteric modulators, are compared with specific observations for the case of mGlu4 receptor activation via orthosteric and allosteric mechanisms. First, sub-type selectivity and brain penetration of amino acid mGlu4 receptor agonists are discussed, followed by the quantification of functional allosteric effects, the potential role of heterodimers in the functional response, and the observation of supra-physiological efficacy of mGlu4 receptor PAMs. We show that, in our analysis, these attributes differ from those that may be expected by extrapolating from broad knowledge. In addition, recent progress with mGlu4 receptor radioligands and PET ligands is summarized.


Subject(s)
Central Nervous System/metabolism , Neurodegenerative Diseases/metabolism , Receptors, Metabotropic Glutamate/metabolism , Small Molecule Libraries/chemistry , Allosteric Regulation , Allosteric Site , Biological Transport , Central Nervous System/pathology , Drug Design , Gene Expression Regulation , Humans , Ion Channels/genetics , Ion Channels/metabolism , Ligands , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Protein Multimerization , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/genetics , Signal Transduction , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...