Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Reproduction ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39074054

ABSTRACT

Unconventional oil and natural gas (UOG) operations have emerged over the last four decades to transform oil and gas production in the United States and globally by unlocking previously inaccessible hydrocarbon deposits. UOG development utilizes many compounds associated with conventional oil and gas, as well as some specific to UOG extraction, particularly during hydraulic fracturing (HF). While research is increasing on UOG chemicals and their mixtures, this review discusses the current evidence for reproductive toxicity following exposures to UOG/HF mixtures. These complex chemical mixtures have been demonstrated to interact with numerous mechanisms known to influence reproductive health. A growing number of environmental and controlled laboratory testing studies have reported adverse reproductive health effects in animals exposed to various UOG chemical mixtures. An expanding body of epidemiological literature has assessed adverse birth outcomes, although none has directly examined reproductive measures such as time to pregnancy, semen quality, and other direct measures of fertility. The existing literature provides moderate evidence for decreased birth weights, increased risk of small for gestational age and/or preterm birth, increased congenital abnormalities, and increased infant mortality, though importantly, studies are widely variable in methods used. Most studies utilized distance from UOG operations as an exposure proxy and did not measure actual chemical exposures experienced by those living near these operations. As such, while there is growing evidence for effects on births in these regions and good mechanistic evidence for reproductive toxicity, there is much research still needed to make firm conclusions about UOG development and reproductive health.

2.
Toxicol Sci ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897649

ABSTRACT

Northeastern British Columbia is a region of prolific unconventional oil and gas activity (UOG). UOG activity can release volatile organic compounds (VOCs) which can elevate oxidative stress and disrupt antioxidant activity in exposed pregnant individuals, potentially increasing the risk of adverse pregnancy outcomes. This study measured biomarkers of oxidative stress and antioxidant activity in pooled urine samples of 85 pregnant individuals living in Northeastern British Columbia, to analyze associations between indoor air VOCs, oil and gas well density and proximity metrics, and biomarker concentrations. Concentrations of catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), total antioxidant capacity (TAC), 6-hydroxymelatonin sulfate (aMT6s), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and 8-isoprostane (8-IP) were measured using assay kits. Associations between exposure metrics and biomarker concentrations were determined using multiple linear regression models adjusted for biomarker-specific covariables. UOG proximity was associated with decreased SOD and 8-OHdG. Decreased 8-OHdG was associated with increased proximity to all wells. Decreased aMT6s was observed with increased indoor air hexanal concentrations. MDA was negatively associated with indoor air 1,4-dioxane concentrations. No statistically significant associations were found between other biomarkers and exposure metrics. While some associations linked oil and gas activity to altered oxidative stress and antioxidant activity, the possibility of chance findings due to the large number of tests can not be discounted. This study shows that living near UOG wells may alter oxidative stress and antioxidant activity in pregnant individuals. More research is needed to elucidate underlying mechanisms and to what degree UOG activity affects oxidative stress and antioxidant activity.

3.
Environ Pollut ; 348: 123773, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38499172

ABSTRACT

Despite the growing unconventional natural gas production industry in northeastern British Columbia, Canada, few studies have explored the air quality implications on human health in nearby communities. Researchers who have worked with pregnant women in this area have found higher levels of volatile organic compounds (VOCs) in the indoor air of their homes associated with higher density and closer proximity to gas wells. To inform ongoing exposure assessments, this study develops land use regression (LUR) models to predict ambient air pollution at the homes of pregnant women by using natural gas production activities as predictor variables. Using the existing monitoring network, the models were developed for three temporal scales for 12 air pollutants. The models predicting monthly, bi-annual, and annual mean concentrations explained 23%-94%, 54%-94%, and 73%-91% of the variability in air pollutant concentrations, respectively. These models can be used to investigate associations between prenatal exposure to air pollutants associated with natural gas production and adverse health outcomes in northeastern British Columbia.


Subject(s)
Air Pollutants , Air Pollution , Female , Humans , Pregnancy , Natural Gas , Environmental Monitoring , Air Pollution/analysis , Air Pollutants/analysis , British Columbia
4.
J Toxicol Environ Health A ; 86(12): 383-396, 2023 06 18.
Article in English | MEDLINE | ID: mdl-37154018

ABSTRACT

Northeastern British Columbia (Canada) is an area of oil and gas exploitation, which may result in release of fine (PM2.5) and inhalable (PM10) particulate matter. The aims of this study were to: 1) apply extrapolation methods to estimate exposure to PM2.5 and PM10 concentrations among EXPERIVA (Exposures in the Peace River Valley study) participants using air quality data archives; and 2) conduct exploratory analyses to investigate correlation between PM exposure and metrics of oil and gas wells density, proximity, and activity. Gestational exposure to PM2.5 and PM10 of the EXPERIVA participants (n = 85) was estimated by averaging the concentrations measured at the closest or three closest air monitoring stations during the pregnancy period. Drilling metrics were calculated based upon the density and proximity of conventional and unconventional oil and gas wells to each participant's residence. Phase-specific metrics were determined for unconventional wells. The correlations (ρ) between exposure to PM2.5 and PM10 and metrics of well density/proximity were determined using Spearman's rank correlation test. Estimated PM ambient air concentrations ranged between 4.73 to 12.13 µg/m3 for PM2.5 and 7.14 to 26.61 µg/m3 for PM10. Conventional wells metrics were more strongly correlated with PM10 estimations (ρ between 0.28 and 0.79). Unconventional wells metrics for all phases were positively correlated with PM2.5 estimations (ρ between 0.23 and 0.55). These results provide evidence of a correlation between density and proximity of oil and gas wells and estimated PM exposure in the EXPERIVA participants.


Subject(s)
Air Pollutants , Air Pollution , Female , Pregnancy , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution/analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL