Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Adv Food Nutr Res ; 109: 160-184, 2024.
Article in English | MEDLINE | ID: mdl-38777412

ABSTRACT

Current global estimation suggests that about 10% of adults worldwide have diabetes, thus, various strategies are needed to address the issue, including dietary factors such as vitamin D. Various studies have suggested an inverse associations between vitamin D and the risks and pathogenesis of all forms of diabetes (type 1, type 2 and gestational diabetes). The underlying mechanism is not fully understood; however, the expression of vitamin D receptors in pancreatic beta cells suggests an important physiological role for vitamin D in beta cell function. Vitamin D deficiency may impair blood glucose control and decrease insulin sensitivity by reducing insulin secretion from beta cells. Many studies suggest that vitamin D intervention may be beneficial; however, there is inconclusive evidence of the effectiveness of vitamin D supplementation on reducing the risks or managing the pathogenesis of all forms of diabetes. Part of the pathogenesis of vitamin D for reducing diabetes is thought to be related to its impact on gut microbiota profile, via the suggested prebiotic properties of vitamin D.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Vitamin D Deficiency , Vitamin D , Humans , Vitamin D/pharmacology , Vitamin D/metabolism , Gastrointestinal Microbiome/drug effects , Diabetes Mellitus/prevention & control , Dietary Supplements
2.
Microbiol Resour Announc ; 13(7): e0104023, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38809034

ABSTRACT

Members of Bacillota and Pseudomonadota phyla are frequently considered bacterial infectious agents in humans. As part of a large sequencing project of clinically relevant pathogens, we hybrid-assembled complete genomes of Cytobacillus, Domibacillus, Enterobacter, Neisseria, Pseudomonas, and Streptococcus species isolated from clinical specimens.

3.
Commun Biol ; 7(1): 349, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514781

ABSTRACT

The past decade has seen an increase in the prevalence of sequence type (ST) 45 methicillin-resistant Staphylococcus aureus (MRSA), yet the underlying drivers for its emergence and spread remain unclear. To better understand the worldwide dissemination of ST45 S. aureus, we performed phylogenetic analyses of Australian isolates, supplemented with a global population of ST45 S. aureus genomes. Our analyses revealed a distinct lineage of multidrug-resistant ST45 MRSA harbouring qacA, predominantly found in Australia and Singapore. Bayesian inference predicted that the acquisition of qacA occurred in the late 1990s. qacA was integrated into a structurally variable region of the chromosome containing Tn552 (carrying blaZ) and Tn4001 (carrying aac(6')-aph(2")) transposable elements. Using mutagenesis and in vitro assays, we provide phenotypic evidence that qacA confers tolerance to chlorhexidine. These findings collectively suggest both antimicrobial resistance and the carriage of qacA may play a role in the successful establishment of ST45 MRSA.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus aureus/genetics , Bayes Theorem , Phylogeny , Staphylococcal Infections/epidemiology , Membrane Transport Proteins/genetics , Bacterial Proteins/genetics , Australia
4.
Int J Antimicrob Agents ; 63(5): 107144, 2024 May.
Article in English | MEDLINE | ID: mdl-38494147

ABSTRACT

OBJECTIVES: Daptomycin is one of the few last-line antimicrobials available for the treatment of multidrug-resistant Staphylococcus aureus infections. An increasing number of daptomycin non-susceptible S. aureus infections has been reported worldwide, including Australia. Resistance to daptomycin is multifactorial and involves chromosomal mutations in genes encoding proteins involved in cell membrane and cell wall synthesis. METHODS: In this study, we performed broth microdilution (BMD) to determine the daptomycin minimum inhibitory concentration (MIC) of 66 clinical isolates of S. aureus previously reported as daptomycin non-susceptible by the VITEKⓇ 2. We used whole-genome sequencing to characterise the isolates and screened the genomes for mutations associated with daptomycin non-susceptibility. RESULTS: Only 56 of the 66 isolates had a daptomycin MIC >1 mg/L by BMD. Although the 66 isolates were polyclonal, ST22 was the predominant sequence type and one-third of the isolates were multidrug resistant. Daptomycin non-susceptibility was primarily associated with MprF mutations-at least one MprF mutation was identified in the 66 isolates. Twelve previously reported MprF mutations associated with daptomycin non-susceptibility were identified in 83% of the isolates. Novel MprF mutations identified included P314A, P314F, P314T, S337T, L341V, F349del, and T423R. CONCLUSIONS: Daptomycin non-susceptible S. aureus causing infections in Australia are polyclonal and harbour MprF mutation(s). The identification of multidrug-resistant daptomycin non-susceptible S. aureus is a public health concern.


Subject(s)
Aminoacyltransferases , Anti-Bacterial Agents , Bacterial Proteins , Daptomycin , Microbial Sensitivity Tests , Mutation , Staphylococcal Infections , Staphylococcus aureus , Whole Genome Sequencing , Daptomycin/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Australia , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Bacterial Proteins/genetics , Aminoacyltransferases/genetics , Male , Drug Resistance, Multiple, Bacterial/genetics , Female , Genome, Bacterial/genetics , Middle Aged , Aged , Adult
6.
Article in English | MEDLINE | ID: mdl-37968066

ABSTRACT

From 1 January to 31 December 2022, fifty-five institutions across Australia participated in the Australian Staphylococcus aureus Surveillance Outcome Program (ASSOP). The aim of ASSOP 2022 was to determine the proportion of Staphylococcus aureus bacteraemia (SAB) isolates in Australia that were antimicrobial resistant, with particular emphasis on susceptibility to methicillin and on characterisation of the molecular epidemiology of the methicillin-resistant isolates. A total of 3,214 SAB episodes were reported, of which 77.5% were community-onset. Overall, 15.0% of S. aureus were methicillin resistant. The 30-day all-cause mortality associated with methicillin-resistant SAB was 21.4%, which was significantly different to the 16.8% all-cause mortality associated with methicillin-susceptible SAB (p = 0.02). With the exception of the ß-lactams and erythromycin, antimicrobial resistance in methicillin-susceptible S. aureus was rare. However, in addition to the ß-lactams, approximately 31% of methicillin-resistant S. aureus (MRSA) were resistant to ciprofloxacin; 30% to erythromycin; 13% to tetracycline; 11% to gentamicin; and 2% to co-trimoxazole. One MRSA isolate, with a daptomycin MIC of 1.5 mg/L, harboured the A302V mprF and A23V cls2 mutations. When applying the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, teicoplanin resistance was detected in one MRSA isolate. Resistance to vancomycin or linezolid was not detected. Resistance to non-ß-lactam antimicrobials was largely attributable to the healthcare-associated MRSA (HA-MRSA) clone ST22-IV [2B] (EMRSA-15), and to the community-associated MRSA (CA-MRSA) clone ST45-V [5C2&5] which has acquired resistance to multiple antimicrobials including ciprofloxacin, clindamycin, erythromycin, gentamicin, and tetracycline. The ST22-IV [2B] (EMRSA-15) clone is the predominant HA-MRSA clone in Australia. Nonetheless, 86% of methicillin-resistant SAB episodes were due to CA-MRSA clones. Although polyclonal, approximately 72% of CA-MRSA clones were characterised as ST93-IV [2B] (Queensland clone); ST5-IV [2B]; ST45-V [5C2&5]; ST1-IV [2B]; ST30-IV [2B]; ST97-IV [2B]; ST953-IV [2B]; and ST8-IV [2B]. As CA-MRSA is well established in the Australian community, it is important to monitor antimicrobial resistance patterns in community- and healthcare-associated SAB as this information will guide therapeutic practices in treating S. aureus bacteraemia.


Subject(s)
Anti-Infective Agents , Bacteremia , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcal Infections/epidemiology , Staphylococcal Infections/drug therapy , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/epidemiology , Agar/therapeutic use , Cross Infection/epidemiology , Cross Infection/drug therapy , Methicillin/therapeutic use , Australia/epidemiology , Drug Resistance, Bacterial , Erythromycin/therapeutic use , Ciprofloxacin/therapeutic use , Gentamicins/therapeutic use , Tetracycline/therapeutic use
7.
Article in English | MEDLINE | ID: mdl-37968067

ABSTRACT

The Australian Group on Antimicrobial Resistance (AGAR) performs regular period-prevalence studies to monitor changes in antimicrobial resistance in selected enteric gram-negative pathogens. The 2022 survey was the tenth year to focus on blood stream infections caused by Enterobacterales, and the eighth year where Pseudomonas aeruginosa and Acinetobacter species were included. Fifty-five hospitals Australia-wide participated in 2022. The 2022 survey tested 9,739 isolates, comprising Enterobacterales (8,773; 90.1%), P. aeruginosa (840; 8.6%) and Acinetobacter species (126; 1.3%), using commercial automated methods. The results were analysed using Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (January 2023). Key resistances included resistance to the third-generation cephalosporin ceftriaxone in 12.7%/12.7% (CLSI/EUCAST criteria) of Escherichia coli and in 6.6%/6.6% of Klebsiella pneumoniae complex. Resistance rates to ciprofloxacin were 13.7%/13.7% for E. coli; 7.8%/7.8% for K. pneumoniae complex; 5.3%/5.3% for Enterobacter cloacae complex; and 4.3%/10.0% for P. aeruginosa. Resistance rates to piperacillin-tazobactam were 2.8%/5.9%; 2.9%/8.7%; 18.3%/27.2%; and 6.1%/14.7% for the same four species, respectively. Twenty-nine Enterobacterales isolates from 28 patients were shown to harbour a carbapenemase gene: 18 blaIMP-4; four blaNDM-5; three blaNDM-1; one blaOXA-181; one blaOXA-244; one blaNDM-1 + blaOXA-181; and one blaNDM-5 + blaOXA-181. Transmissible carbapenemase genes were also detected among two Acinetobacter baumannii complex isolates (blaOXA-23) and one P. aeruginosa (blaNDM-1) in the 2022 survey.


Subject(s)
Anti-Bacterial Agents , Sepsis , Humans , Anti-Bacterial Agents/pharmacology , Agar , Escherichia coli , Drug Resistance, Bacterial , Australia/epidemiology , Sepsis/epidemiology , Klebsiella pneumoniae , Pseudomonas aeruginosa
8.
Article in English | MEDLINE | ID: mdl-37968068

ABSTRACT

From 1 January to 31 December 2022, fifty-five institutions across Australia participated in the Australian Enterococcal Surveillance Outcome Program (AESOP). The aim of AESOP 2022 was to determine the proportion of enterococcal bacteraemia isolates in Australia that were antimicrobial resistant, and to characterise the molecular epidemiology of the Enterococcus faecium isolates. Of the 1,535 unique episodes of enterococcal bacteraemia investigated, 92.8% were caused by either E. faecalis (52.9%) or E. faecium (39.9%). Ampicillin and vancomycin resistance were not detected in E. faecalis but were detected in 95.4% and 46.9% of E. faecium respectively. One E. faecalis isolate, with a daptomycin minimum inhibitory concentration (MIC) of 8.0 mg/L, harboured the F478L GdpD mutation. One E. faecium with a daptomycin MIC of 24.0 mg/L harboured the A20D Cls mutation; both mutations are known to be associated with daptomycin resistance. Two E. faecium isolates, one with a linezolid MIC ≥ 256 mg/L and the other with a linezolid MIC of 16 mg/L, harboured the 23S rRNA G2576T mutation, a mutation associated with linezolid resistance in enterococci. Overall, 48.8% of E. faecium harboured either the vanA or the vanB gene, of which 28.0% harboured vanA and 72.0% harboured vanB. The percentage of vancomycin-resistant E. faecium bacteraemia isolates in Australia remains substantially higher than that recorded in most European countries. The E. faecium isolates consisted of 62 multi-locus sequence types (STs); 85.5% of isolates were classified into eight major STs each containing ten or more isolates. All major STs belonged to clonal complex (CC) 17, a major hospital-adapted polyclonal E. faecium cluster. The major STs (ST17, ST78, ST80, ST117, ST555, ST796, ST1421, and ST1424) were each found across most regions of Australia. The predominant ST was ST17, which was identified in all regions. Overall, 53.7% of isolates belonging to the eight major STs harboured the vanA or vanB gene. AESOP 2022 has shown that enterococcal bacteraemia episodes in Australia are frequently caused by polyclonal ampicillin-resistant high-level gentamicin resistant vanA- or vanB-positive E. faecium which have limited treatment options.


Subject(s)
Anti-Infective Agents , Bacteremia , Daptomycin , Gram-Positive Bacterial Infections , Sepsis , Humans , Anti-Bacterial Agents/pharmacology , Agar , Australia/epidemiology , Linezolid , Drug Resistance, Bacterial , Gram-Positive Bacterial Infections/epidemiology , Enterococcus , Sepsis/epidemiology , Bacteremia/epidemiology , Anti-Infective Agents/pharmacology , Ampicillin
9.
Int J Antimicrob Agents ; 62(6): 107014, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866472

ABSTRACT

Antimicrobial resistance (AMR) is a major global public health threat, particularly affecting patients in resource-poor settings. Comprehensive surveillance programmes are essential to reducing the high mortality and morbidity associated with AMR and are integral to informing treatment decisions and guidelines, appraising the effectiveness of intervention strategies, and directing development of new antibacterial agents. Various surveillance programmes exist worldwide, including those administered by government bodies or funded by the pharmaceutical industry. One of the largest and longest running industry-sponsored AMR surveillance programme is the Study for Monitoring Antimicrobial Resistance Trends (SMART), which recently completed its 20th year. The SMART database has grown to almost 500 000 isolates from over 200 sites in more than 60 countries, encompassing all major geographic regions and including many sites in low- and middle-income countries. The SMART surveillance programme has evolved in scope over time, including additional antibacterial agents, pathogens and infection sites, in line with changing epidemiology and medical need. Surveillance data from SMART and similar programmes have been used successfully to detect emerging resistance threats and AMR patterns in specific countries and regions, thus informing national and local clinical treatment guidelines. The SMART database can be accessed readily by physicians and researchers globally, which may be especially valuable to those from countries with limited healthcare resources, where surveillance and resistance data are rarely collected. Continued participation from as many sites as possible worldwide and maintenance of adequate funding are critical factors to fully realising the potential of large-scale AMR surveillance programmes into the future.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
10.
Sci Data ; 10(1): 628, 2023 09 16.
Article in English | MEDLINE | ID: mdl-37717051

ABSTRACT

The Two Weeks in the World research project has resulted in a dataset of 3087 clinically relevant bacterial genomes with pertaining metadata, collected from 59 diagnostic units in 35 countries around the world during 2020. A relational database is available with metadata and summary data from selected bioinformatic analysis, such as species prediction and identification of acquired resistance genes.


Subject(s)
Bacteria , Genome, Bacterial , Bacteria/genetics , Computational Biology , Databases, Factual , Metadata
11.
Genes (Basel) ; 14(9)2023 08 29.
Article in English | MEDLINE | ID: mdl-37761864

ABSTRACT

DNA methylation (DNAm) is a dynamic, age-dependent epigenetic modification that can be used to study interactions between genetic and environmental factors. Environmental exposures during critical periods of growth and development may alter DNAm patterns, leading to increased susceptibility to diseases such as asthma and allergies. One method to study the role of DNAm is the epigenetic clock-an algorithm that uses DNAm levels at select age-informative Cytosine-phosphate-Guanine (CpG) dinucleotides to predict epigenetic age (EA). The difference between EA and calendar age (CA) is termed epigenetic age acceleration (EAA) and reveals information about the biological capacity of an individual. Associations between EAA and disease susceptibility have been demonstrated for a variety of age-related conditions and, more recently, phenotypes such as asthma and allergic diseases, which often begin in childhood and progress throughout the lifespan. In this review, we explore different epigenetic clocks and how they have been applied, particularly as related to childhood asthma. We delve into how in utero and early life exposures (e.g., smoking, air pollution, maternal BMI) result in methylation changes. Furthermore, we explore the potential for EAA to be used as a biomarker for asthma and allergic diseases and identify areas for further study.


Subject(s)
Air Pollution , Asthma , Hypersensitivity , Humans , Hypersensitivity/genetics , Asthma/genetics , Biomarkers , Epigenesis, Genetic
12.
Int J Antimicrob Agents ; 62(1): 106849, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37187337

ABSTRACT

Vancomycin variable enterococci (VVE) are van-positive enterococci with a vancomycin-susceptible phenotype (VVE-S) that can convert to a resistant phenotype (VVE-R) and be selected for during vancomycin exposure. VVE-R outbreaks have been reported in Canada and Scandinavian countries. The aim of this study was to examine the presence of VVE in whole genome sequenced (WGS) Australian bacteremia Enterococcus faecium (Efm) isolates collected through the Australian Group on Antimicrobial resistance (AGAR) network. Eight potential VVEAus isolates, all identified as Efm ST1421, were selected based on the presence of vanA and a vancomycin-susceptible phenotype. During vancomycin selection, two potential VVE-S harboring intact vanHAX genes, but lacking the prototypic vanRS and vanZ genes, reverted to a resistant phenotype (VVEAus-R). Spontaneous VVEAus-R reversion occurred at a frequency of 4-6 × 10-8 resistant colonies per parent cell in vitro after 48 h and led to high-level vancomycin and teicoplanin resistance. The S to R reversion was associated with a 44-bp deletion in the vanHAX promoter region and an increased vanA plasmid copy number. The deletion in the vanHAX promoter region enables an alternative constitutive promoter for the expression of vanHAX. Acquisition of vancomycin resistance was associated with a low fitness cost compared with the corresponding VVEAus-S isolate. The relative proportion of VVEAus-R vs. VVEAus-S decreased over time in serial passages without vancomycin selection. Efm ST1421 is one of the predominant VanA-Efm multilocus sequence types found across most regions of Australia, and has also been associated with a major prolonged VVE outbreak in Danish hospitals.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Humans , Vancomycin/pharmacology , Enterococcus faecium/genetics , Anti-Bacterial Agents/pharmacology , DNA Copy Number Variations , Australia/epidemiology , Enterococcus/genetics , Plasmids/genetics , Multigene Family , Gram-Positive Bacterial Infections/epidemiology , Bacterial Proteins/genetics
14.
Article in English | MEDLINE | ID: mdl-36529133

ABSTRACT

Abstract: From 1 January to 31 December 2021, forty-eight institutions around Australia participated in the Australian Staphylococcus aureus Surveillance Outcome Programme (ASSOP). The aim of ASSOP 2021 was to determine the proportion of Staphylococcus aureus bacteraemia (SAB) isolates in Australia that were antimicrobial resistant, with particular emphasis on susceptibility to methicillin and on characterisation of the molecular epidemiology of the methicillin-resistant isolates. A total of 2,928 SAB episodes were reported, of which 78.4% were community-onset. Overall, 16.9% of S. aureus isolates were methicillin resistant. The 30-day all-cause mortality associated with methicillin-resistant SAB was 15.0%, which was not significantly different from the 14.4% all-cause mortality associated with methicillin-susceptible SAB (p = 0.7). With the exception of the ß-lactams and erythromycin, antimicrobial resistance in methicillin-susceptible S. aureus was rare. However, in addition to the ß-lactams, approximately 36% of methicillin-resistant S. aureus (MRSA) were resistant to ciprofloxacin; 30% to erythromycin; 15% to tetracycline; 16% to gentamicin; and 3% to co-trimoxazole. When applying the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, teicoplanin resistance was detected in three S. aureus isolates. Resistance to vancomycin or linezolid was not detected. Resistance to non-ß-lactam antimicrobials was largely attributable to the healthcare-associated MRSA (HA-MRSA) clone ST22-IV [2B] (EMRSA-15), and the community-associated MRSA (CA-MRSA) clone ST45-V [5C2&5] which has acquired multiple antimicrobial resistance determinants including ciprofloxacin, erythromycin, clindamycin, gentamicin and tetracycline. The ST22-IV [2B] (EMRSA-15) clone is the predominant HA-MRSA clone in Australia. Nonetheless, 85% of methicillin-resistant SAB episodes were due to CA-MRSA clones. Although polyclonal, approximately 68% of CA-MRSA clones were characterised as ST93-IV [2B] (Queensland clone); ST45-V [5C2&5]; ST5-IV [2B]; ST1-IV [2B]; ST30-IV [2B]; and ST97-IV [2B]. As CA-MRSA is well established in the Australian community, it is important to monitor antimicrobial resistance patterns in community- and healthcare-associated SAB as this information will guide therapeutic practices in treating S. aureus bacteraemia.


Subject(s)
Anti-Infective Agents , Bacteremia , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcal Infections/epidemiology , Staphylococcal Infections/drug therapy , Staphylococcus aureus , Bacteremia/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Agar/therapeutic use , Australia/epidemiology , Methicillin/therapeutic use , Microbial Sensitivity Tests , Cross Infection/drug therapy , Drug Resistance, Bacterial , Gentamicins/therapeutic use , Erythromycin/therapeutic use , Ciprofloxacin/therapeutic use , Tetracycline/therapeutic use
15.
Article in English | MEDLINE | ID: mdl-36384434

ABSTRACT

Abstract: From 1 January to 31 December 2021, forty-eight institutions around Australia participated in the Australian Enterococcal Surveillance Outcome Programme (AESOP). The aim of AESOP 2021 was to determine the proportion of enterococcal bacteraemia isolates in Australia that were antimicrobial resistant, and to characterise the molecular epidemiology of the Enterococcus faecium isolates. Of the 1,297 unique episodes of enterococcal bacteraemia investigated, 94.4% were caused by either E. faecalis (54.1%) or E. faecium (40.3%). Ampicillin resistance was detected in one E. faecalis isolate and in 89.3% of E. faecium isolates. Vancomycin non-susceptibility was not detected in E. faecalis but was detected in 37.9% of E. faecium. Overall, 39.6% of E. faecium harboured the vanA and/or vanB genes. For the vanA/vanB positive E. faecium isolates, 35.8% harboured the vanA gene and 64.2% the vanB gene. Although the percentage of vancomycin-resistant E. faecium bacteraemia isolates was significantly lower than that reported in the 2020 AESOP report (presumably due to the COVID-19 elective surgery restrictions placed on hospitals), it remains substantially higher than that recorded in most European countries. Isolates of E. faecium consisted of 73 multi-locus sequence types (STs); 77.2% of isolates were classified into seven major STs each containing more than ten isolates. All major STs belonged to clonal cluster (CC) 17, a major hospital-adapted polyclonal E. faecium cluster. The major STs (ST17, ST1424, ST796, ST78, ST80, ST1421 and ST555) were found across most regions of Australia. The predominant ST was ST17 which was identified in all regions except the Northern Territory. Overall, 46.5% of isolates belonging to the seven major STs harboured the vanA or vanB gene. The AESOP 2021 has shown that enterococcal bacteraemia episodes in Australia are frequently caused by polyclonal ampicillin-resistant high-level gentamicin resistant vanA- or vanB-positive E. faecium which have limited treatment options.


Subject(s)
Bacteremia , COVID-19 , Gram-Positive Bacterial Infections , Humans , Anti-Bacterial Agents/pharmacology , Agar , Gram-Positive Bacterial Infections/epidemiology , Vancomycin , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Enterococcus/genetics , Bacteremia/epidemiology , Northern Territory
16.
Article in English | MEDLINE | ID: mdl-36384435

ABSTRACT

Abstract: The Australian Group on Antimicrobial Resistance (AGAR) performs regular period-prevalence studies to monitor changes in antimicrobial resistance in selected enteric gram-negative pathogens. The 2021 survey was the ninth year to focus on bloodstream infections caused by Enterobacterales, and the seventh year where Pseudomonas aeruginosa and Acinetobacter species were included. The 2021 survey tested 8,947 isolates, comprising Enterobacterales (8,104; 90.6%), P. aeruginosa (745; 8.3%) and Acinetobacter species (98; 1.1%), using commercial automated methods. The results were analysed using Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (January 2022). Of the key resistances, resistance to the third-generation cephalosporin ceftriaxone was found in 12.5%/12.5% (CLSI/EUCAST criteria) of Escherichia coli and in 6.1%/6.1% of Klebsiella pneumoniae. Resistance rates to ciprofloxacin were 12.3%/12.3% for E. coli; 7.2%/7.2% for K. pneumoniae; 5.4%/5.4% for Enterobacter cloacae complex; and 3.7%/8.0% for P. aeruginosa. Resistance rates to piperacillin-tazobactam were 2.8%/6.5%; 2.9%/9.9%; 18.4%/28.1%; and 6.9%/12.8% for the same four species, respectively. Seventeen Enterobacterales isolates from 17 patients were shown to harbour a carbapenemase gene: 12 blaIMP-4; two blaNDM-7; one blaNDM-1; one blaOXA-181; and one blaKPC-2. No transmissible carbapenemase genes were detected among P. aeruginosa or Acinetobacter isolates in the 2021 survey.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Humans , Australia/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Agar , Escherichia coli , Pseudomonas aeruginosa , Klebsiella pneumoniae
17.
Microorganisms ; 10(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36014068

ABSTRACT

BACKGROUND: Defined by the emergence of antibiotic resistant strains, Staphylococcus aureus is a priority bacterial species with high antibiotic resistance. However, a rise in the prevalence of penicillin-susceptible S. aureus (PSSA) bloodstream infections has recently been observed worldwide, including in Australia, where the proportion of methicillin-susceptible S. aureus causing bacteremia identified phenotypically as penicillin-susceptible has increased by over 35%, from 17.5% in 2013 to 23.7% in 2020. OBJECTIVES: To determine the population structure of PSSA causing community- and hospital-onset bacteremia in Australia and to evaluate routine phenotypic antimicrobial susceptibility methods to reliably confirm penicillin resistance on blaZ-positive S. aureus initially classified as penicillin-susceptible by the Vitek® 2 automated microbiology system. RESULTS: Whole genome sequencing on 470 PSSA collected in the 2020 Australian Group on Antimicrobial Resistance Australian Staphylococcus aureus Sepsis Outcome Programme identified 84 multilocus sequence types (STs), of which 79 (463 isolates) were grouped into 22 clonal complexes (CCs). The dominant CCs included CC5 (31.9%), CC97 (10.2%), CC45 (10.0%), CC15 (8.7%), and CC188 (4.9%). Many of the CCs had multiple STs and spa types and, based on the immune evasion cluster type, isolates within a CC could be classified into different strains harboring a range of virulence and resistance genes. Phylogenetic analyses of the isolates showed most CCs were represented by one clade. The blaZ gene was identified in 45 (9.6%) PSSA. Although multiclonal, approximately 50% of blaZ-positive PSSA were from CC15 and were found to be genetically distant from the blaZ-negative CC15 PSSA. The broth microdilution, Etest® and cefinase, performed poorly; however, when the appearance of the zone edge was considered; as per the EUCAST and CLSI criteria, disc diffusion detected 100% of blaZ-positive PSSA. CONCLUSIONS: In Australia, PSSA bacteremia is not caused by the expansion of a single clone. Approximately 10% of S. aureus classified as penicillin-susceptible by the Vitek® 2 harbored blaZ. Consequently, we recommend that confirmation of Vitek® 2 PSSA be performed using an alternative method, such as disc diffusion with careful interpretation of the zone edge.

19.
Article in English | MEDLINE | ID: mdl-35469555

ABSTRACT

From 1 January to 31 December 2020, forty-nine institutions around Australia participated in the Australian Enterococcal Sepsis Outcome Programme (AESOP). The aims of AESOP 2020 were to determine the proportion of enterococcal bacteraemia isolates in Australia that were antimicrobial-resistant, and to characterise the molecular epidemiology of the E. faecium isolates. Of the 1,230 unique episodes of enterococcal bacteraemia investigated, 93.9% were caused by either E. faecalis (54.2%) or E. faecium (39.7%). Ampicillin resistance was not detected in E. faecalis but was detected in 88.2% of E. faecium . Vancomycin non-susceptibility was detected in 0.2% of E. faecalis and 32.6% of E. faecium . Overall, 35.2% of E. faecium harboured vanA and/or vanB genes. For the vanA/B positive E. faecium isolates, 38.8% harboured the vanA gene, 60.6% the vanB gene, and 0.6% harboured both vanA and vanB . Although the percentage of E. faecium bacteraemia isolates was significantly lower than that detected in the 2019 AESOP (presumably due to the COVID-19 elective surgery restrictions placed on hospitals), it remains substantially higher than that recorded in most European countries. The E. faecium isolates detected consisted of 71 multilocus sequence types (STs), with 81.7% of these isolates classified into eight major STs each containing ten or more isolates. All major STs belonged to clonal cluster 17 (CC17), a major hospital-adapted polyclonal E. faecium cluster. The major STs (ST17, ST1424, ST80, ST796, ST78, ST1421, ST555 and ST117) were found across most regions of Australia. The predominant clone was ST17, which was identified in all regions except the Northern Territory. Overall, 40.9% of isolates belonging to the eight major STs harboured the vanA or vanB gene. The AESOP 2020 has shown enterococcal bacteraemia episodes in Australia are frequently caused by polyclonal ampicillin-resistant high-level gentamicin-resistant vanA - or vanB -positive E. faecium which have limited treatment options.


Subject(s)
Bacteremia , COVID-19 , Gram-Positive Bacterial Infections , Sepsis , Agar , Anti-Bacterial Agents/pharmacology , Bacteremia/drug therapy , Bacteremia/epidemiology , Drug Resistance, Bacterial , Enterococcus/genetics , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Humans , Northern Territory , Sepsis/drug therapy , Sepsis/epidemiology
20.
Article in English | MEDLINE | ID: mdl-35469556

ABSTRACT

From 1 January to 31 December 2020, forty-nine institutions around Australia participated in the Australian Staphylococcus aureus Sepsis Outcome Programme (ASSOP). The aims of ASSOP 2020 were to determine the proportion of Staphylococcus aureus bacteraemia (SAB) isolates in Australia that were antimicrobial resistant, with particular emphasis on susceptibility to methicillin; and to characterise the molecular epidemiology of the methicillin-resistant isolates. A total of 2,734 SAB episodes were reported, of which 79.7% were community-onset. Of S. aureus isolates, 17.6% were methicillin resistant. The 30-day all-cause mortality associated with methicillin-resistant SAB was 14.2%, which was not significantly different from the 13.3% mortality associated with methicillin-susceptible SAB (p = 0.6). With the exception of the ß-lactams and erythromycin, antimicrobial resistance in methicillin-susceptible S. aureus was rare. However, in addition to the ß-lactams, approximately 35% of methicillin-resistant S. aureus (MRSA) were resistant to erythromycin, 33% to ciprofloxacin, 13% to tetracycline, 13% to gentamicin and 4% to co-trimoxazole. When applying the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, teicoplanin resistance was detected in four S. aureus isolates. Resistance was not detected for vancomycin and linezolid. Resistance to non-beta-lactam antimicrobials was largely attributable to two healthcare-associated MRSA (HA-MRSA) clones: ST22-IV [2B] (EMRSA-15) and ST239-III [3A] (Aus-2/3 EMRSA). The ST22-IV [2B] (EMRSA-15) clone is the predominant HA-MRSA clone in Australia. However, 85% percent of methicillin-resistant SAB isolates were community-associated MRSA (CA-MRSA) clones. Although polyclonal, approximately 77% of CA-MRSA clones were characterised as: ST93-IV [2B] (Queensland CA-MRSA); ST5-IV [2B]; ST45-V [5C2&5]; ST1-IV [2B]; ST30-IV [2B]; ST8-IV [2B]; and ST97-IV [2B]. The CA-MRSA clones, in particular ST45-V [5C2&5], have acquired multiple antimicrobial resistance determinants including ciprofloxacin, erythromycin, clindamycin, gentamicin and tetracycline. The multi-resistant ST45-V [5C2&5] clone accounted for 11.0% of CA-MRSA. As CA-MRSA is well established in the Australian community, it is important to monitor antimicrobial resistance patterns in community- and healthcare-associated SAB as this information will guide therapeutic practices in treating S. aureus sepsis.


Subject(s)
Anti-Infective Agents , Bacteremia , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Sepsis , Staphylococcal Infections , Agar/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Australia/epidemiology , Bacteremia/drug therapy , Bacteremia/epidemiology , Ciprofloxacin/therapeutic use , Cross Infection/drug therapy , Cross Infection/epidemiology , Drug Resistance, Bacterial , Erythromycin/therapeutic use , Gentamicins/therapeutic use , Humans , Methicillin/therapeutic use , Sepsis/drug therapy , Sepsis/epidemiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Staphylococcus aureus , Tetracyclines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL