Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ann Med Surg (Lond) ; 85(5): 1408-1412, 2023 May.
Article in English | MEDLINE | ID: mdl-37229003

ABSTRACT

Due to its incidence, clinical polymorphism and severity, urinary tract infection is an important problem in elderly. The objectives of the authors' work were to establish the bacteriological profile of urinary tract infection and/or colonization in the elderly and then to study drug resistance of bacterial strains isolated. Materials and methods: This is a 36 months retrospective study from 22 March 2016 to 11 May 2019. The study included urinary specimens of persons aged 65 years or over, hospitalized or consulting at the authors' hospital. Urines were processed according to the recommendations of the medical microbiology reference system and European Committee on Antimicrobial Susceptibility Testing. Results: The authors collected 6552 requests for cytobacteriological examination of urine. Most of the specimens was collected in the middle stream (n=5503; 84%). Cultures were sterile in 49.77% of cases. Positive in 50.22% of cases. Among positive samples we had 53.41% polymorphic cultures, 32.75% urinary tract infection, and 13.82% urinary tract colonization. Gender distribution showed a sex ratio at 0.62. Gram-negative bacilli, with Escherichia coli as the main species, dominated the isolated bacteria. Resistance rates of E. coli strains that we isolated were 70% for amoxicillin, 36.31% for amoxicillin-clavulanate and 25% for ciprofloxacin. A high resistance rate was seen for third generation cephalosporins. Least resistance recorded to nitrofurantoin. Conclusion: ITU in the elderly is diverse and significantly different from that of younger patients, through its high contamination rate, difficulty in acquiring clinical information, high rate of asymptomatic bacteriuria, and high proportion of multidrug resistant bacteria.

2.
Antibiotics (Basel) ; 12(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37107017

ABSTRACT

Ptychotis verticillata Duby, referred to as Nûnkha in the local language, is a medicinal plant that is native to Morocco. This particular plant is a member of the Apiaceae family and has a longstanding history in traditional medicine and has been utilized for therapeutic purposes by practitioners for generations. The goal of this research is to uncover the phytochemical makeup of the essential oil extracted from P. verticillata, which is indigenous to the Touissite region in Eastern Morocco. The extraction of the essential oil of P. verticillata (PVEO) was accomplished through the use of hydro-distillation via a Clevenger apparatus. The chemical profile of the essential oil was then determined through analysis utilizing gas chromatography-mass spectrometry (GC/MS). The study findings indicated that the essential oil of P. verticillata is composed primarily of Carvacrol (37.05%), D-Limonene (22.97%), γ-Terpinene (15.97%), m-Cymene (12.14%) and Thymol (8.49%). The in vitro antioxidant potential of PVEO was evaluated using two methods: the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical trapping assay and the ferric reducing antioxidant power (FRAP) method. The data demonstrated considerable radical scavenging and relative antioxidative power. Escherichia coli, Staphylococcus aureus, Listeria innocua, and Pseudomonas aeruginosa were the most susceptible bacterial strains tested, while Geotrichum candidum, Candida albicans, and Rhodotorula glutinis were the most resilient fungi strains. PVEO had broad-spectrum antifungal and antibacterial properties. To elucidate the antioxidative and antibacterial characteristics of the identified molecules, we applied the methodology of molecular docking, a computational approach that forecasts the binding of a small molecule to a protein. Additionally, we utilized the Prediction of Activity Spectra for Substances (PASS) algorithm; Absorption, Distribution, Metabolism, and Excretion (ADME); and Pro-Tox II (to predict the toxicity in silico) tests to demonstrate PVEO's identified compounds' drug-likeness, pharmacokinetic properties, the anticipated safety features after ingestion, and the potential pharmacological activity. Finally, our findings scientifically confirm the ethnomedicinal usage and usefulness of this plant, which may be a promising source for future pharmaceutical development.

3.
Polymers (Basel) ; 15(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37111982

ABSTRACT

Controlled drug delivery is a crucial area of study for improving the targeted availability of drugs; several polymer systems have been applied for the formulation of drug delivery vehicles, including linear amphiphilic block copolymers, but with some limitations manifested in their ability to form only nanoaggregates such as polymersomes or vesicles within a narrow range of hydrophobic/hydrophilic balance, which can be problematic. For this, multi-arm architecture has emerged as an efficient alternative that overcame these challenges, with many interesting advantages such as reducing critical micellar concentrations, producing smaller particles, allowing for various functional compositions, and ensuring prolonged and continuous drug release. This review focuses on examining the key variables that influence the customization of multi-arm architecture assemblies based on polycaprolactone and their impact on drug loading and delivery. Specifically, this study focuses on the investigation of the structure-property relationships in these formulations, including the thermal properties presented by this architecture. Furthermore, this work will emphasize the importance of the type of architecture, chain topology, self-assembly parameters, and comparison between multi-arm structures and linear counterparts in relation to their impact on their performance as nanocarriers. By understanding these relationships, more effective multi-arm polymers can be designed with appropriate characteristics for their intended applications.

4.
Ind Eng Chem Res ; 62(11): 4540-4553, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36975772

ABSTRACT

In recent decades, food-packaging markets have attracted researchers' interest in many ways because such industries can directly affect human health. In this framework, the present study emphasizes the interesting and smart properties provided by new nanocomposites based on conducting polymers (CPs), silver nanoparticles (AgNPs), and cellulose fibers (CFs) and their possible applications as active food packaging. Polyaniline and poly(3,4-ethylenedioxythiophene) containing AgNPs were elaborated on via a simple one-step in situ chemical oxidative polymerization on CFs. Spectroscopic and microscopic characterization allowed a full discussion of the morphology and chemical structure of the nanocomposites and confirmed the successful polymerization of the monomer as well as the incorporation of AgNPs into the CP-based formulation. This study aims to demonstrate that it is possible to produce a highly efficient package with enhanced protective properties. Thus, the synthesized nanocomposites were tested as volatile organic compounds, sensors, and antibacterial and antioxidant agents. It is shown that the elaborated materials can, on the one hand, inhibit the development of biofilms and decrease the oxidation reaction rate of foodstuffs and, on the other hand, detect toxic gases generated by spoiled food. The presented method has unlocked massive opportunities for using such formulations as an interesting alternative for classical food containers. The smart and novel properties offered by the synthesized composites can be operated for future industrial applications to prevent any degradation of the packaged products by offering optimum protection and creating an atmosphere that can extend the shelf life of foodstuffs.

5.
Nat Prod Res ; 37(12): 2003-2008, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35959692

ABSTRACT

The essential oils (EOs) of Rosmarinus officinalis (Ro) are from two cities located in the eastern region of Morocco (Taourirt and Jerrada) were extracted using the steam distillation method in two cooperatives, namely "Belahssan" and "Beni Yaala Zkara", respectively. The chemical composition was determined by gas chromatography coupled with mass spectrometry (GC/MS), in which 1,8-cineole (53.6%), α-pinene (12.3%), and camphor (9.6%) represented the major compounds for essential oil of Rosmarinus officinalis from Taourirt (RoEOT). While, 1,8-cineole (42.3%), α-pinene (11.6%), and camphor (10.5%) were predominant in that of Jerada Rosmarinus officinalis (RoEOJ). The antioxidant activity of the two essential oils was assessed using, the free radical scavenging activity against the DPPH•, the ferric reducing power assay (FRAP), and the ß-carotene bleaching technique.


Subject(s)
Oils, Volatile , Rosmarinus , Antioxidants/pharmacology , Antioxidants/chemistry , Eucalyptol , Camphor , Rosmarinus/chemistry , Morocco , Oils, Volatile/chemistry
6.
Front Pharmacol ; 13: 1036129, 2022.
Article in English | MEDLINE | ID: mdl-36339531

ABSTRACT

Nigella sativa is plant that is endowed with various pharmacological activities including antioxidant, anticancer, anti-inflammatory, antibacterial, antidiabetic, and immunostimulant. This study aims to investigate the antidiabetic activity of the N. sativa essential oil on two key enzymes the α-amylase and hemoglobin glycation. After the extraction procedure, the N. sativa essential oil, were subject to qualitative and semi-quantitative analysis using GC/MS, for the identification of the different bioactive compounds. This was followed by an evaluation of the in vitro inhibition capacity of the α-amylase and the hemoglobin glycation. Finally, a molecular docking study was conducted to determine the bioactive compounds responsible for the antidiabetic activity. The extracted essential oil showed the presence of different bioactive compounds including α-phellandrene (29.6%), ß-cymene (23.8%), 4-caranol (9.7%), thymol (7%). The N. sativa essential oil was found to be endowed with an antiradical scavenging activity with an IC50 of (7.81 ± 0.08 mg/ml), and to have a ferric reducing activity with an IC50 value of (7.53 ± 0.11 mg/ml). The IC50 value for the α-amylase inhibitory activity was 0.809 mg/ml, indicating an inhibitory impact of the enzyme. The IC50 value for the N. sativa essential oil's hemoglobin antiglycation activity was 0.093 mg/ml. For most predominating phytochemicals present in the N. sativa essential oil, molecular docking studies against human pancreatic α-amylase and human hemoglobin enzymes revealed that these compounds can serve as lead molecules to develop new antidiabetic compounds.

7.
Nanomaterials (Basel) ; 12(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35269342

ABSTRACT

As a result of their close similarities to the inorganic mineral components of human bone, hydroxyapatite nanoparticles (n-HAp) are widely used in biomedical applications and for the elaboration of biocompatible scaffold drug delivery systems for bone tissue engineering. In this context, a new efficient and economic procedure was used for the consolidation of n-HAp in the presence of various Nigella sativa (NS) fractions at a near-room temperature. The research conducted in the present study focuses on the physicochemical properties of loaded n-HAp 3D scaffolds by NS fractions and the in vitro antibacterial activity against Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 27853), and Gram-positive (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 700603) bacteria. In order to better understand the effect of the inserted fractions on the HAp molecular structure, the elaborated samples were subject to Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopic analyses. In addition, the morphological investigation by scanning electron microscope (SEM) of the loaded n-HAp 3D scaffolds demonstrated the presence of a porous structure, which is generally required in stimulating bone regeneration. Furthermore, the fabricated 3D composites exhibited significant antibacterial activity against all tested bacteria. Indeed, MIC values ranging from 5 mg/mL to 20 mg/mL were found for the HAp-Ethanol fraction (HAp-Et) and HAp-Hexane fraction (HAp-Hex), while the HAp-Aqueous fraction (HAp-Aq) and HAp-Methanol fraction (HAp-Me) showed values between 20 mg/mL and 30 mg/mL on the different strains. These results suggest that the HAp-NS scaffolds were effective as a drug delivery system and have very promising applications in bone tissue engineering.

8.
Antioxidants (Basel) ; 11(2)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35204272

ABSTRACT

Zingiber officinale Roscoe and Citrus limon L. are well known for their multi-use and for their pharmacological effect in the treatment of many illnesses. This study aims to investigate the chemical composition of the ginger and lemon juice extracts and in addition, to evaluate their antioxidant properties and their hepatoprotective effect against the liver damage of Wistar rats induced by the injection of CCl4 to treated animals. The obtained effects were completed by a histological study for better confirmation of the registered pharmacological effects. The ginger juice extract was found to be rich in 4-gingerol, 6-gingediol, and 6-gingerol, while the lemon juice extract chemical composition was highlighted by the presence of eriodyctiol, rutin, hesperidin, and isorhamnetin. Concerning the antioxidant activity, the ginger, lemon juice extracts, and their formulation showed an important antioxidant potential using TAC (total antioxidant capacity), an antiradical activity against the radical DPPH• (2,2-diphenyl-1-picrylhydrazil), and a ferric reducing power. Finally, the ginger, lemon, and their formulation at different doses were able to prevent CCl4 induced liver damage. Indeed, these different bioactive compounds could be used as alternative agents for the treatment of chronic liver diseases.

9.
Biomed Res Int ; 2021: 9979419, 2021.
Article in English | MEDLINE | ID: mdl-34258287

ABSTRACT

Nigella sativa (NS) is a well-known plant for its various benefits and multiuse in traditional medicine. This study is aimed at investigating the chemical composition of the different NS fractions by using GC-MS for the esterified fatty acids or HPLC-UV for organic fraction and at evaluating the inhibitory effect on pancreatic α-amylase (in vitro, in vivo) and intestinal glucose absorption. Among all the investigated fractions, it was shown that they are rich with different molecules of great interest. The n-hexane fraction was characterized by the presence of linoleic acid (44.65%), palmitic acid (16.32%), stearic acid (14.60%), and thymoquinone (8.7%), while among the identified peaks in EtOH fraction we found catechin (89.03 mg/100 g DW), rutin (6.46 mg/100 g DW), and kaempferol (0.032 mg/100 g DW). The MeOH fraction was distinguished with the presence of gallic acid (19.91 mg/100 g DW), catechin (13.79 mg/100 g DW), and rutin (21.07 mg/100 g DW). Finally, the aqueous fraction was marked by the existence of different molecules; among them, we mention salicylic acid (32.26 mg/100 g DW), rutin (21.46 mg/100 g DW), and vanillic acid (3.81 mg/100 g DW). Concerning the inhibitory effect on pancreatic α-amylase, it was found that in the in vitro study, the best IC50 registered were those of EtOH (0.25 mg/ml), MeOH (0.10 mg/ml), aqueous (0.031 mg/ml), and n-hexane fraction (0.76 mg/ml), while in the in vivo study an important inhibition of α-amylase in normal and diabetic rats was observed. Finally, the percentage of intestinal glucose absorption was evaluated for all tested extracts and it was ranging from 24.82 to 60.12%. The results of the present study showed that the NS seed fractions exert an interesting inhibitory effect of α-amylase and intestinal glucose absorption activity which could be associated with the existent bioactive compounds. Indeed, these compounds can be used as antidiabetic agents because of their nontoxic effect and high efficacy.


Subject(s)
Chromatography, High Pressure Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Glucose/pharmacokinetics , Intestines/pathology , Nigella sativa/metabolism , Pancreas/enzymology , Pancreatic alpha-Amylases/biosynthesis , Animals , Benzoquinones/chemistry , Diabetes Mellitus, Experimental , Female , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Inhibitory Concentration 50 , Jejunum/metabolism , Linoleic Acid/chemistry , Male , Mice , Palmitic Acid/chemistry , Pancreas/drug effects , Rats , Rats, Wistar , Stearic Acids/chemistry
10.
Article in English | MEDLINE | ID: mdl-33790979

ABSTRACT

Nigella sativa L. (NS) and its volatile compounds are well known for their broad spectrum of effects. This study aimed to investigate the variability of the chemical composition and the in vitro antibacterial activity of five essential oils (Eos) originated from Morocco, Saudi Arabia, Syria, India, and France. These five samples were grown under different edaphic and climatic conditions. The agar diffusion method and microdilution method in 96-well plates were used to test the sensitivity of multidrug-resistant strains clinically isolated from patients (methicillin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii), for the determination of the minimum inhibitory concentration and bactericidal concentration. Among all the investigated Eos, the monoterpenes were highly present in the chemical composition. Moroccan, Saudi Arabian, and Syrian seeds were characterized by the presence α-phellandrene (20.03-30.54%), ß-cymene (12.31-23.82 %), and 4-caranol (9.77-14.27%). The Indian seeds were rich with 4-caranol (18.81%), ß-cymene (14.22%), α-phellandrene (10.58%), and ß-chamigrene (9.54%), while France NS was rich with estragole (20.22%) and D-limonene (14.63%). The minimum inhibitory (MIC) and bactericidal concentration (MBC) obtained for the four Eos (with the exception of France because of the low yield) tested were ranging from 3 to 40 µl/ml. Gram-positive (+) bacteria were slightly sensitive to the Eos tested than the Gram-negative (-) bacteria. The results of this study showed that the Eos of NS seeds show interesting antibacterial activity which could be associated to the existence of different bioactive compounds. Indeed, these compounds can be used for preventive or curative purposes in the face of the noncontrolled emergence of resistance to antibiotics.

11.
Biomolecules ; 12(1)2021 12 23.
Article in English | MEDLINE | ID: mdl-35053168

ABSTRACT

Medicinal and aromatic plants are mainly characterized by the presence of different bioactive compounds which exhibit various therapeutic activities. In order to investigate the different pharmacological properties of different Nigella sativa extracts, a multitude of research articles published in the period between 2019 and 2021 were obtained from different databases (Scopus, Science Direct, PubMed, and Web of Science), and then explored and analyzed. The analysis of the collected articles allows us to classify the phytochemicals and the pharmacological activities through their underlying molecular mechanisms, as well as to explore the pharmacological activities exhibited by several identified compounds in Nigella sativa which allow a better understanding, and better elucidation, of the bioactive compounds responsible for the pharmacological effects. Also shown are the existence of other bioactive compounds that are still unexplored and could be of great interest. This review could be taken as a guide for future studies in the field.


Subject(s)
Nigella sativa/chemistry , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Phytotherapy , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...