Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 135(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-36172824

ABSTRACT

Extracellular matrix (ECM) is an important component of stem cell niche. Remodeling of ECM mediated by ECM regulators, such as matrix metalloproteinases (MMPs) plays a vital role in stem cell function. However, the mechanisms that modulate the function of ECM regulators in the stem cell niche are understudied. Here, we explored the role of the transcription factor (TF) ETS-1, which is expressed in the cathepsin-positive cell population, in regulating the expression of the ECM regulator, mt-mmpA, thereby modulating basement membrane thickness. In planarians, the basement membrane around the gut/inner parenchyma is thought to act as a niche for pluripotent stem cells. It has been shown that the early epidermal progenitors migrate outwards from this region and progressively differentiate to maintain the terminal epidermis. Our data shows that thickening of the basement membrane in the absence of ets-1 results in defective migration of stem cell progeny. Furthermore, the absence of ets-1 leads to a defective epidermal progenitor landscape, despite its lack of expression in those cell types. Together, our results demonstrate the active role of ECM remodeling in regulating tissue homeostasis and regeneration in the planarian Schmidtea mediterranea. This article has an associated First Person interview with one of the co-first authors of the paper.


Subject(s)
Mediterranea , Planarians , Animals , Humans , Cell Differentiation , Cathepsins/metabolism , Planarians/metabolism , Epidermis/metabolism , Matrix Metalloproteinases/metabolism , Basement Membrane/metabolism , Transcription Factors/metabolism
2.
Sci Adv ; 3(7): e1603025, 2017 07.
Article in English | MEDLINE | ID: mdl-28782018

ABSTRACT

Light sensing has independently evolved multiple times under diverse selective pressures but has been examined only in a handful among the millions of light-responsive organisms. Unsurprisingly, mechanistic insights into how differential light processing can cause distinct behavioral outputs are limited. We show how an organism can achieve complex light processing with a simple "eye" while also having independent but mutually interacting light sensing networks. Although planarian flatworms lack wavelength-specific eye photoreceptors, a 25 nm change in light wavelength is sufficient to completely switch their phototactic behavior. Quantitative photoassays, eye-brain confocal imaging, and RNA interference/knockdown studies reveal that flatworms are able to compare small differences in the amounts of light absorbed at the eyes through a single eye opsin and convert them into binary behavioral outputs. Because planarians can fully regenerate, eye-brain injury-regeneration studies showed that this acute light intensity sensing and processing are layered on simple light detection. Unlike intact worms, partially regenerated animals with eyes can sense light but cannot sense finer gradients. Planarians also show a "reflex-like," eye-independent (extraocular/whole-body) response to low ultraviolet A light, apart from the "processive" eye-brain-mediated (ocular) response. Competition experiments between ocular and extraocular sensory systems reveal dynamic interchanging hierarchies. In intact worms, cerebral ocular response can override the reflex-like extraocular response. However, injury-regeneration again offers a time window wherein both responses coexist, but the dominance of the ocular response is reversed. Overall, we demonstrate acute light intensity-based behavioral switching and two evolutionarily distinct but interacting light sensing networks in a regenerating organism.

3.
Nat Commun ; 5: 4255, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24963846

ABSTRACT

Rounded-amoeboid cancer cells use actomyosin contractility driven by Rho-ROCK and JAK-STAT3 to migrate efficiently. It has been suggested that rounded-amoeboid cancer cells do not require matrix metalloproteinases (MMPs) to invade. Here we compare MMP levels in rounded-amoeboid and elongated-mesenchymal melanoma cells. Surprisingly, we find that rounded-amoeboid melanoma cells secrete higher levels of several MMPs, including collagenase MMP-13 and gelatinase MMP-9. As a result, rounded-amoeboid melanoma cells degrade collagen I more efficiently than elongated-mesenchymal cells. Furthermore, using a non-catalytic mechanism, MMP-9 promotes rounded-amoeboid 3D migration through regulation of actomyosin contractility via CD44 receptor. MMP-9 is upregulated in a panel of rounded-amoeboid compared with elongated-mesenchymal melanoma cell lines and its levels are controlled by ROCK-JAK-STAT3 signalling. MMP-9 expression increases during melanoma progression and it is particularly prominent in the invasive fronts of lesions, correlating with cell roundness. Therefore, rounded-amoeboid cells use both catalytic and non-catalytic activities of MMPs for invasion.


Subject(s)
Actomyosin/metabolism , Cell Movement , Janus Kinases/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/metabolism , Melanoma/metabolism , STAT3 Transcription Factor/metabolism , rho-Associated Kinases/metabolism , Cell Line, Tumor , Humans , Melanoma/pathology , Neoplasm Invasiveness , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...