Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
2.
Ecol Evol ; 14(4): e11194, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571789

ABSTRACT

Hybridization in antelope species has been widely reported in South African national parks and provincial reserves as well as on private land due to anthropogenic effects. In a closed management setting, hybridization may occur due to the crossbreeding of closely related species with unequal sex ratios, resulting in either sterile or fertile offspring. In this study, we used molecular techniques to evaluate the risk of anthropogenic hybridization between blesbok (Damaliscus pygargus phillipsi) and red hartebeest (Alcelaphus buselaphus caama) in an isolated group that purposely included the two species with unequal sex ratios (one red hartebeest male and 19 male and female blesbok). Genetic analysis based on microsatellites confirmed the presence of seven hybrid individuals. Mitochondrial analysis verified that hybridization occurred between blesbok females and the red hartebeest male. STRUCTURE and NEWHYBRIDS classified the hybrids as F1. It is suspected that the hybrid individuals were sterile as the males had undeveloped testes and only F1 hybrids were detected. Thus, the risk of hybridization between these two species may be limited in the wild. In captive settings, genetic monitoring should be included in management plans for blesbok and red hartebeest to ensure that the long-term consequences of wasted reproductive effort are limited.

3.
Ecol Evol ; 14(3): e10962, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450323

ABSTRACT

Bontebok (Damaliscus pygargus pygargus) and blesbok (D. p. phillipsi) are classified as separate sub-species. The blesbok has a widespread distribution throughout South Africa and is listed as least concern by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. Bontebok on the other hand is endemic within the Cape Floristic Region of the Western Cape in South Africa and has been listed as near-threatened species on the IUCN Red List of Threatened Species. Bontebok populations experienced a severe bottleneck and were brought back from the brink of extinction in the 1830s. Currently, the subspecies is threatened by hybridisation with blesbok resulting in fertile offspring. To date, molecular investigations using neutral markers have determined that genetic diversity in pure South African bontebok was significantly lower than in pure blesbok. Here, we investigated genetic diversity in bontebok, blesbok and hybrid individuals using microsatellites and an adaptive marker (toll-like receptor two (TLR2)). The study of single nucleotide polymorphisms (SNPs) revealed five mutations in TLR2 in different individuals and subspecies of D. pygargus. This included three non-synonymous and two synonymous mutations. The three amino acid substitution mutations were predicted to have no effect on protein function. Two of the five mutations, one of which resulted in an amino acid substitution, were not present in bontebok. The other three mutations were present to varying frequencies in the three groups. We confirm low adaptive and neutral diversity in bontebok. These mutations provide insights into the genetic diversity and relationships among the two sub-species of D. pygargus and may have implications for their conservation and management.

4.
Sci Data ; 10(1): 787, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945571

ABSTRACT

Birds in seasonal habitats rely on intricate strategies for optimal timing of migrations. This is governed by environmental cues, including photoperiod. Genetic factors affecting intrinsic timekeeping mechanisms, such as circadian clock genes, have been explored, yielding inconsistent findings with potential lineage-dependency. To clarify this evidence, a systematic review and phylogenetic reanalysis was done. This descriptor outlines the methodology for sourcing, screening, and processing relevant literature and data. PRISMA guidelines were followed, ultimately including 66 studies, with 34 focusing on candidate genes at the genotype-phenotype interface. Studies were clustered using bibliographic coupling and citation network analysis, alongside scientometric analyses by publication year and location. Data was retrieved for allele data from databases, article supplements, and direct author communications. The dataset, version 1.0.2, encompasses data from 52 species, with 46 species for the Clock gene and 43 for the Adcyap1 gene. This dataset, featuring data from over 8000 birds, constitutes the most extensive cross-species collection for these candidate genes, used in studies investigating gene polymorphisms and seasonal bird migration.


Subject(s)
Animal Migration , Avian Proteins , Birds , Alleles , Circadian Rhythm/genetics , Photoperiod , Phylogeny , Polymorphism, Genetic , Systematic Reviews as Topic , Animals , Avian Proteins/genetics , Animal Migration/physiology
5.
Data Brief ; 51: 109615, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37822884

ABSTRACT

The dataset comprises a comprehensive systematic review and meta-analysis exploring the utility of biological clocks as age estimation markers in the context of animal ecology. The systematic review adhered to PRISMA guidelines and employed optimized Boolean search strings to retrieve relevant studies from Scopus and Dimensions databases. A total of 78 methylation studies and 108 telomere studies were included after rigorous screening. Effect sizes were computed, and statistical transformations were applied when necessary, ensuring compatibility for meta-analysis. Data from these studies were meticulously collected, encompassing statistical measures, study attributes, and additional biological information. The dataset comprises several folders, carefully organized to facilitate access and understanding. It contains raw and processed data used in the systematic review and meta-analysis, including Boolean search strings, database search results, citation network analysis data, PRISMA statements, extracted study data, and input data for meta-analysis. Each folder's contents are described in detail, ensuring clarity and reusability. This dataset aggregates primary research studies spanning diverse ecosystems and taxa, providing a valuable resource for researchers, biodiversity managers and policymakers. This dataset offers a wealth of information and analysis potential for researchers studying age estimation markers in animal ecology, serving as a robust foundation for future investigations and reviews in this evolving field.

6.
Biol Rev Camb Philos Soc ; 98(6): 1972-2011, 2023 12.
Article in English | MEDLINE | ID: mdl-37356823

ABSTRACT

Various biological attributes associated with individual fitness in animals change predictably over the lifespan of an organism. Therefore, the study of animal ecology and the work of conservationists frequently relies upon the ability to assign animals to functionally relevant age classes to model population fitness. Several approaches have been applied to determining individual age and, while these methods have proved useful, they are not without limitations and often lack standardisation or are only applicable to specific species. For these reasons, scientists have explored the potential use of biological clocks towards creating a universal age-determination method. Two biological clocks, tooth layer annulation and otolith layering have found universal appeal. Both methods are highly invasive and most appropriate for post-mortem age-at-death estimation. More recently, attributes of cellular ageing previously explored in humans have been adapted to studying ageing in animals for the use of less-invasive molecular methods for determining age. Here, we review two such methods, assessment of methylation and telomere length, describing (i) what they are, (ii) how they change with age, and providing (iii) a summary and meta-analysis of studies that have explored their utility in animal age determination. We found that both attributes have been studied across multiple vertebrate classes, however, telomere studies were used before methylation studies and telomere length has been modelled in nearly twice as many studies. Telomere length studies included in the review often related changes to stress responses and illustrated that telomere length is sensitive to environmental and social stressors and, in the absence of repair mechanisms such as telomerase or alternative lengthening modes, lacks the ability to recover. Methylation studies, however, while also detecting sensitivity to stressors and toxins, illustrated the ability to recover from such stresses after a period of accelerated ageing, likely due to constitutive expression or reactivation of repair enzymes such as DNA methyl transferases. We also found that both studied attributes have parentally heritable features, but the mode of inheritance differs among taxa and may relate to heterogamy. Our meta-analysis included more than 40 species in common for methylation and telomere length, although both analyses included at least 60 age-estimation models. We found that methylation outperforms telomere length in terms of predictive power evidenced from effect sizes (more than double that observed for telomeres) and smaller prediction intervals. Both methods produced age correlation models using similar sample sizes and were able to classify individuals into young, middle, or old age classes with high accuracy. Our review and meta-analysis illustrate that both methods are well suited to studying age in animals and do not suffer significantly from variation due to differences in the lifespan of the species, genome size, karyotype, or tissue type but rather that quantitative method, patterns of inheritance, and environmental factors should be the main considerations. Thus, provided that complex factors affecting the measured trait can be accounted for, both methylation and telomere length are promising targets to develop as biomarkers for age determination in animals.


Subject(s)
Aging , Biological Clocks , Humans , Animals , Ecology , Karyotyping
7.
J Mol Evol ; 91(4): 502-513, 2023 08.
Article in English | MEDLINE | ID: mdl-37079046

ABSTRACT

Evolutionary processes happen gradually over time and are, thus, considered time dependent. In addition, several evolutionary processes are either adaptations to local habitats or changing habitats, otherwise restricted thereby. Since evolutionary processes driving speciation take place within the landscape of environmental and temporal bounds, several published studies have aimed at providing accurate, fossil-calibrated, estimates of the divergence times of both extant and extinct species. Correct calibration is critical towards attributing evolutionary adaptations and speciation both to the time and paleogeography that contributed to it. Data from more than 4000 studies and nearly 1,50,000 species are available from a central TimeTree resource and provide opportunities of retrieving divergence times, evolutionary timelines, and time trees in various formats for most vertebrates. These data greatly enhance the ability of researchers to investigate evolution. However, there is limited functionality when studying lists of species that require batch retrieval. To overcome this, a PYTHON package termed Python-Automated Retrieval of TimeTree data (PAReTT) was created to facilitate a biologist-friendly interaction with the TimeTree resource. Here, we illustrate the use of the package through three examples that includes the use of timeline data, time tree data, and divergence time data. Furthermore, PAReTT was previously used in a meta-analysis of candidate genes to illustrate the relationship between divergence times and candidate genes of migration. The PAReTT package is available for download from GitHub or as a pre-compiled Windows executable, with extensive documentation on the package available on GitHub wiki pages regarding dependencies, installation, and implementation of the various functions.


Subject(s)
Fossils , Animals , Phylogeny
8.
Biol Rev Camb Philos Soc ; 98(4): 1051-1080, 2023 08.
Article in English | MEDLINE | ID: mdl-36879518

ABSTRACT

Timing is a crucial aspect for survival and reproduction in seasonal environments leading to carefully scheduled annual programs of migration in many species. But what are the exact mechanisms through which birds (class: Aves) can keep track of time, anticipate seasonal changes, and adapt their behaviour? One proposed mechanism regulating annual behaviour is the circadian clock, controlled by a highly conserved set of genes, collectively called 'clock genes' which are well established in controlling the daily rhythmicity of physiology and behaviour. Due to diverse migration patterns observed within and among species, in a seemingly endogenously programmed manner, the field of migration genetics has sought and tested several candidate genes within the clock circuitry that may underlie the observed differences in breeding and migration behaviour. Among others, length polymorphisms within genes such as Clock and Adcyap1 have been hypothesised to play a putative role, although association and fitness studies in various species have yielded mixed results. To contextualise the existing body of data, here we conducted a systematic review of all published studies relating polymorphisms in clock genes to seasonality in a phylogenetically and taxonomically informed manner. This was complemented by a standardised comparative re-analysis of candidate gene polymorphisms of 76 bird species, of which 58 are migrants and 18 are residents, along with population genetics analyses for 40 species with available allele data. We tested genetic diversity estimates, used Mantel tests for spatial genetic analyses, and evaluated relationships between candidate gene allele length and population averages for geographic range (breeding- and non-breeding latitude), migration distance, timing of migration, taxonomic relationships, and divergence times. Our combined analysis provided evidence (i) of a putative association between Clock gene variation and autumn migration as well as a putative association between Adcyap1 gene variation and spring migration in migratory species; (ii) that these candidate genes are not diagnostic markers to distinguish migratory from sedentary birds; and (iii) of correlated variability in both genes with divergence time, potentially reflecting ancestrally inherited genotypes rather than contemporary changes driven by selection. These findings highlight a tentative association between these candidate genes and migration attributes as well as genetic constraints on evolutionary adaptation.


Subject(s)
Animal Migration , Birds , Animals , Animal Migration/physiology , Birds/genetics , Polymorphism, Genetic , Genotype , Biological Evolution , Seasons
9.
Mol Ecol ; 31(16): 4208-4223, 2022 08.
Article in English | MEDLINE | ID: mdl-35748392

ABSTRACT

We live in a world characterized by biodiversity loss and global environmental change. The extinction of large carnivores can have ramifying effects on ecosystems like an uncontrolled increase in wild herbivores, which in turn can have knock-on impacts on vegetation regeneration and communities. Cheetahs (Acinonyx jubatus) serve important ecosystem functions as apex predators; yet, they are quickly heading towards an uncertain future. Threatened by habitat loss, human-wildlife conflict and illegal trafficking, there are only approximately 7100 individuals remaining in nature. We present the most comprehensive genome-wide analysis of cheetah phylogeography and conservation genomics to date, assembling samples from nearly the entire current and past species' range. We show that their phylogeography is more complex than previously thought, and that East African cheetahs (A. j. raineyi) are genetically distinct from Southern African individuals (A. j. jubatus), warranting their recognition as a distinct subspecies. We found strong genetic differentiation between all classically recognized subspecies, thus refuting earlier findings that cheetahs show only little differentiation. The strongest differentiation was observed between the Asiatic and all the African subspecies. We detected high inbreeding in the Critically Endangered Iranian (A. j. venaticus) and North-western (A. j. hecki) subspecies, and show that overall cheetahs, along with snow leopards, have the lowest genome-wide heterozygosity of all the big cats. This further emphasizes the cheetah's perilous conservation status. Our results provide novel and important information on cheetah phylogeography that can support evidence-based conservation policy decisions to help protect this species. This is especially relevant in light of ongoing and proposed translocations across subspecies boundaries, and the increasing threats of illegal trafficking.


Subject(s)
Acinonyx , Acinonyx/genetics , Animals , Ecosystem , Genome , Genomics , Humans , Iran
10.
Nature ; 599(7884): 209-210, 2021 11.
Article in English | MEDLINE | ID: mdl-34667298
11.
Mol Biol Rep ; 48(1): 171-181, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33275194

ABSTRACT

Cheetahs (Acinonyx jubatus) are listed as vulnerable on the International Union for Conservation of Nature Red List of Threatened Species. Threats include loss of habitat, human-wildlife conflict and illegal wildlife trade. In South Africa, the export of wild cheetah is a restricted activity under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), however, limited legal trade is permitted of animals born to captive parents. To effectively monitor the legal and illegal trade in South Africa, it was thus essential to develop a validated molecular test. Here, we designed a single nucleotide polymorphism (SNP) array for cheetah from Double Digest Restriction Associated DNA sequencing data for individual identification and parentage testing. In order to validate the array, unrelated individuals and 16 family groups consisting of both parents and one to three offspring were genotyped using the Applied Biosystems™ QuantStudio™ 12K Flex Real-Time PCR System. In addition, parentage assignments were compared to microsatellite data. Cross-species amplification was tested in various felids and cheetah sub-species in order to determine the utility of the SNP array in other species. We obtained successful genotyping results for 218 SNPs in cheetah (A. j. jubatus) with an optimal DNA input concentration ranging from 10 to 30 ng/µl. The combination of SNPs had a higher resolving power for individual identification compared to microsatellites and provided high assignment accuracy in known pedigrees. Cross-species amplification in other felids was determined to be limited. However, the SNP array demonstrated a clear genetic discrimination of two cheetah subspecies tested here. We conclude that the described SNP array is suitable for accurate parentage assignment and provides an important traceability tool for forensic investigations of cheetah trade.


Subject(s)
Acinonyx/genetics , Conservation of Natural Resources , Genome/genetics , Genomics , Animals , Animals, Wild/genetics , Commerce , Ecosystem , Endangered Species , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , South Africa
12.
Article in English | MEDLINE | ID: mdl-31762360

ABSTRACT

Greater bushbabies, strepsirrhine primates, that are distributed across central, eastern and southern Africa, with northern and eastern South Africa representing the species' most southerly distribution. Greater bushbabies are habitat specialists whose naturally fragmented habitats are getting even more fragmented due to anthropogenic activities. Currently, there is no population genetic data or study published on the species. The aim of our study was to investigate the genetic variation in a thick-tailed bushbaby, Otolemur crassicaudatus, population in the Soutpansberg mountain range, Limpopo Province, South Africa. Four mitochondrial regions, ranging from highly conserved to highly variable, were sequenced from 47 individuals. The sequences were aligned and genetic diversity, structure, as well as demographic analyses were performed. Low genetic diversity (π = 0.0007-0.0038 in coding regions and π = 0.0127 in non-coding region; Hd = 0.166-0.569 in coding regions and Hd = 0.584 in non-coding region) and sub-structuring (H = 2-3 in coding regions and H = 4 in non-coding region) was observed with two divergent haplogroups (haplotype pairwise distance = 3-5 in coding region and 6-10 in non-coding region) being identified. This suggests the population may have experienced fixation of mitochondrial haplotypes due to limited female immigration, which is consistent with philopatric species, that alternative haplotypes are not native to this population, and that there may be male mobility from adjacent populations. This study provides the first detailed insights into the mitochondrial genetic diversity of a continental African strepsirrhine primate and demonstrates the utility of mitochondrial DNA in intraspecific genetic population analyses of these primates.


Subject(s)
DNA, Mitochondrial/genetics , Galago/genetics , Genetics, Population , Genome, Mitochondrial/genetics , Animals , Female , Genetic Variation/genetics , Male , Phylogeny , South Africa
13.
Ticks Tick Borne Dis ; 11(2): 101358, 2020 03.
Article in English | MEDLINE | ID: mdl-31870636

ABSTRACT

Recently reported substantial genetic diversity within Theileria equi 18S rRNA gene sequences has led to the identification of five genotypes A, B, C, D, and E, complicating molecular and serological diagnosis. In addition, T. haneyi has lately been reported as a species closely related to the T. equi 18S rRNA genotype C (Knowles et al., 2018). Theileria spp. of this group have a monophyletic origin and are therefore referred to as Equus group to distinguish them from the remaining Theileria lineages (Jalovecka et al., 2019). In this study, we report on the development of genotype-specific quantitative real-time PCR assays capable of detecting and distinguishing between each parasite genotype. Alignment of complete 18S rRNA sequences available on GenBank allowed for the design of a single primer pair and five TaqMan minor groove binder (MGB™) probes specific for each genotype (A-E). The assays, evaluated as qPCR simplex and two qPCR multiplex formats (Multiplex EP-ABC and Multiplex EP-DE), were shown to be both efficient and specific in the detection of T. equi genotypes. The developed qPCR assays were used to study (i) the intra-specific diversity of parasite genotypes within horse and zebra, (ii) the inter-specific differences in parasite genotype diversity in horses as compared to zebra, and (iii) the geographic distribution of T. equi 18S rRNA genotypes in South Africa. In addition, (iv) the presence of T. haneyi in South Africa was evaluated. An assessment of 342 equine field samples comprising 149 field horses, 55 racehorses, and 138 wild zebra confirmed the previously reported presence of T. equi 18S rRNA genotypes A, B, C, and D, and absence of genotype E in South African equids. Theileria equi genotypes A, B, C, and D, were detected in zebra, whereas only genotypes A, C and D, could be identified in field horses, and only genotypes A and C in racehorses. Genotypes B and D were the dominant genotypes identified in zebra in South Africa, while horses were predominantly infected with T. equi genotypes A and C. The greater diversity of T. equi genotypes in zebra suggests that it is an ancestral host for this piroplasmid lineage. Importantly, evidence is presented that each identified T. equi genotype segregates independently in each of the three studied equid populations reinforcing the notion that they represent individual separate entities corresponding to species. Preliminary investigations of the relationship between T. equi genotype C infections and Theileria haneyi, suggest that in addition to the five currently known T. equi genotypes, South African equids are also infected with T. haneyi.


Subject(s)
Equidae , Horse Diseases/epidemiology , Theileria/genetics , Theileriasis/epidemiology , Animals , Base Sequence , Genotype , Horse Diseases/parasitology , Horses , RNA, Protozoan/analysis , RNA, Ribosomal, 18S/analysis , Sequence Alignment/veterinary , South Africa/epidemiology , Theileriasis/parasitology
14.
PLoS One ; 13(7): e0199993, 2018.
Article in English | MEDLINE | ID: mdl-30020954

ABSTRACT

Canine distemper virus (CDV) causes a severe contagious disease in a broad range of hosts. This is the first study to genetically characterise CDV strains from four different wildlife species in South Africa. The phylogenetic diversity of CDV is examined, using the haemagglutinin gene. The South African wildlife CDV isolates showed a high degree of similarity to CDV in South African domestic dogs. Phylogenetic analyses confirmed the presence of 12 geographical lineages with CDV strains from South African wildlife falling within the Southern African lineage. The study reveals two possible co-circulating sub-genotypes corresponding to the northern and southern regions of South Africa respectively. CDV strains from the non-canid species were distinct, but similar to CDV isolates from domestic dog and wild canids. Residues at amino acid sites of the SLAM binding region support the notion that CDV strains encoding 519I / 549H are better adapted to non-canid species than canid species. The amino acids present at site 530 are conserved regardless of host species. Strains from South African wild carnivores showed no difference between host species with all strains presenting 530N. All non-canid strains in this study presented the combination 519I/549H. No evidence of host adaptation or lineage grouping was observed for the Nectin-4 binding region. Further studies should include CDV strains isolated from various hosts from a wider geographical range in South Africa.


Subject(s)
Distemper Virus, Canine/genetics , Dogs/virology , Phylogeny , Amino Acid Substitution , Animals , Hemagglutinins/genetics , South Africa , Viral Proteins/chemistry , Viral Proteins/genetics
15.
Genome Announc ; 5(27)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28684581

ABSTRACT

Canine distemper virus causes global multihost infectious disease. This report details complete genome sequences of three vaccine and two new wild-type strains. The wild-type strains belong to the South African lineage, and all three vaccine strains to the America 1 lineage. This constitutes the first genomic sequences of this virus from South Africa.

16.
PLoS One ; 11(10): e0163331, 2016.
Article in English | MEDLINE | ID: mdl-27760133

ABSTRACT

The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP) diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14) being reduced in comparison to in situ populations (n = 16). Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations.


Subject(s)
Genetic Variation , Spheniscidae/genetics , Toll-Like Receptors/genetics , Animals , Genetic Loci/genetics , Immunity, Innate , Phylogeny , Polymorphism, Single Nucleotide , Spheniscidae/immunology
17.
PLoS One ; 10(1): e0117199, 2015.
Article in English | MEDLINE | ID: mdl-25602281

ABSTRACT

Traditional medicine has been practised in Ghana for centuries with the majority of Ghanaians still patronising the services of traditional healers. Throughout Africa a large number of people use pangolins as a source of traditional medicine, however, there is a dearth of information on the use of animals in folk medicine in Ghana, in particular the use of pangolins. The aim of this study was to determine the prevalent use of pangolins and the level of knowledge of pangolin use among traditional healers in Ghana for the treatment of human ailments. Data was gathered from 48 traditional healers using semi-structured interviews on the traditional medicinal use of pangolin body parts in the Kumasi metropolis of Ghana. The cultural importance index, relative frequency of citation, informant agreement ratio and use agreement values were calculated to ascertain the most culturally important pangolin body part as well as the level of knowledge dissemination among traditional healers with regards pangolin body parts. Our study revealed that 13 body parts of pangolins are used to treat various medicinal ailments. Pangolin scales and bones were the most prevalent prescribed body parts and indicated the highest cultural significance among traditional healing practices primarily for the treatment of spiritual protection, rheumatism, financial rituals and convulsions. Despite being classified under Schedule 1 of Ghana's Wildlife Conservation Act of 1971 (LI 685), that prohibits anyone from hunting or being in possession of a pangolin, our results indicated that the use of pangolins for traditional medicinal purposes is widespread among traditional healers in Ghana. A study on the population status and ecology of the three species of African pangolins occurring in Ghana is urgently required in order to determine the impact this harvest for traditional medical purposes has on their respective populations as current levels appear to be unmonitored and unsustainable.


Subject(s)
Medicine, Traditional/methods , Plants, Medicinal , Animals , Ghana
18.
Hum Immunol ; 67(8): 643-54, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16916662

ABSTRACT

The vitamin D receptor (VDR) and the human leukocyte antigen (HLA) class II complex affect innate and/or adaptive immunity against Mycobacterium tuberculosis. HLA-DRB1, HLA-DQB1, and VDR gene (VDR) polymorphisms were previously associated with tuberculosis (TB) and are here investigated as candidates for TB susceptibility in the Venda population of South Africa. Genomic DNA from 95 patients with pulmonary tuberculosis (PTB) and 117 ethnically matched, healthy controls were typed for HLA-DRB1, DRB3, DRB4, DRB5, DQB1, and VDR polymorphisms FokI, BsmI, ApaI, and TaqI using polymerase chain reaction-sequence specific primers (PCR-SSP). Allele and haplotype frequencies were calculated by the estimator maximum (EM) algorithm. DRB1*1302 phenotype was significantly associated with TB occurring at a significantly higher allele frequency in cases than controls and found in haplotype with DQB1*0602/3. DQB1*0301-0304 phenotype was significantly associated with TB and found in haplotype with DRB1*1101-1121, showing significant linkage disequilibrium (LD) in both cases and controls. Only DRB1*1101-1121-DQB1*05 was significantly associated with TB based on the sequential Bonferroni p value. VDR SNP phenotypes were not associated with TB, but the haplotype F-b-A-T significantly protected from TB. In conclusion, common African HLA-DRB1 and -DQB1 variants, previously associated with protection from malaria and hepatitis B/C virus persistence, predispose the Venda to TB, whereas the proposedly active VDR haplotype F-b-A-T showed significant protection.


Subject(s)
Genetic Predisposition to Disease , HLA-DQ Antigens/genetics , HLA-DR Antigens/genetics , Receptors, Calcitriol/genetics , Tuberculosis, Pulmonary/genetics , Alleles , Case-Control Studies , Haplotypes , Humans , Polymorphism, Single Nucleotide , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...