Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712286

ABSTRACT

Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein. and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.

2.
Cancer Res Commun ; 2(9): 1061-1074, 2022 09.
Article in English | MEDLINE | ID: mdl-36506869

ABSTRACT

Preclinical and clinical studies have evidenced that effective targeted therapy treatment against receptor tyrosine kinases (RTKs) in different solid tumor paradigms is predicated on simultaneous inhibition of both the PI3K and MEK intracellular signaling pathways. Indeed, re-activation of either pathway results in resistance to these therapies. Recently, oncogenic phosphatase SHP2 inhibitors have been developed with some now reaching clinical trials. To expand on possible indications for SHP099, we screened over 800 cancer cell lines covering over 25 subsets of cancer. We found HNSCC was the most sensitive adult subtype of cancer to SHP099. We found that, in addition to the MEK pathway, SHP2 inhibition blocks the PI3K pathway in sensitive HNSCC, resulting in downregulation of mTORC signaling and anti-tumor effects across several HNSCC mouse models, including an HPV+ patient-derived xenograft (PDX). Importantly, we found low levels of the RTK ligand epiregulin identified HNSCCs that were sensitive to SHP2 inhibitor, and, adding exogenous epiregulin mitigated SHP099 efficacy. Mechanistically, epiregulin maintained SHP2-GAB1 complexes in the presence of SHP2 inhibition, preventing downregulation of the MEK and PI3K pathways. We demonstrate HNSCCs were highly dependent on GAB1 for their survival and knockdown of GAB1 is sufficient to block the ability of epiregulin to rescue MEK and PI3K signaling. These data connect the sensitivity of HNSCC to SHP2 inhibitors and to a broad reliance on GAB1-SHP2, revealing an important and druggable signaling axis. Overall, SHP2 inhibitors are being heavily developed and may have activity in HNSCCs, and in particular those with low levels of epiregulin.


Subject(s)
Head and Neck Neoplasms , Phosphatidylinositol 3-Kinases , Animals , Mice , Humans , Phosphatidylinositol 3-Kinases/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Epiregulin/metabolism , Enzyme Inhibitors/pharmacology , Head and Neck Neoplasms/drug therapy , Mitogen-Activated Protein Kinase Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism
3.
Cell Rep ; 40(4): 111095, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35905710

ABSTRACT

Reoccurring/high-risk neuroblastoma (NB) tumors have the enrichment of non-RAS/RAF mutations along the mitogen-activated protein kinase (MAPK) signaling pathway, suggesting that activation of MEK/ERK is critical for their survival. However, based on preclinical data, MEK inhibitors are unlikely to be active in NB and have demonstrated dose-limiting toxicities that limit their use. Here, we explore an alternative way to target the MAPK pathway in high-risk NB. We find that NB models are among the most sensitive among over 900 tumor-derived cell lines to the allosteric SHP2 inhibitor SHP099. Sensitivity to SHP099 in NB is greater in models with loss or low expression of the RAS GTPase activation protein (GAP) neurofibromin 1 (NF1). Furthermore, NF1 is lower in advanced and relapsed NB and NF1 loss is enriched in high-risk NB tumors regardless of MYCN status. SHP2 inhibition consistently blocks tumor growth in high-risk NB mouse models, revealing a new drug target in relapsed NB.


Subject(s)
Neuroblastoma , Neurofibromin 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Animals , Cell Line, Tumor , Mice , Mitogen-Activated Protein Kinase Kinases , Mitogen-Activated Protein Kinases , Neoplasm Recurrence, Local , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Protein Kinase Inhibitors/pharmacology
4.
Mol Cancer Ther ; 20(8): 1400-1411, 2021 08.
Article in English | MEDLINE | ID: mdl-34088831

ABSTRACT

Venetoclax is a small molecule inhibitor of the prosurvival protein BCL-2 that has gained market approval in BCL-2-dependent hematologic cancers including chronic lymphocytic leukemia and acute myeloid leukemia. Neuroblastoma is a heterogenous pediatric cancer with a 5-year survival rate of less than 50% for high-risk patients, which includes nearly all cases with amplified MYCN We previously demonstrated that venetoclax is active in MYCN-amplified neuroblastoma but has limited single-agent activity in most models, presumably the result of other pro-survival BCL-2 family protein expression or insufficient prodeath protein mobilization. As the relative tolerability of venetoclax makes it amenable to combining with other therapies, we evaluated the sensitivity of MYCN-amplified neuroblastoma models to rational combinations of venetoclax with agents that have both mechanistic complementarity and active clinical programs. First, the MDM2 inhibitor NVP-CGM097 increases the prodeath BH3-only protein NOXA to sensitize p53-wild-type, MYCN-amplified neuroblastomas to venetoclax. Second, the MCL-1 inhibitor S63845 sensitizes MYCN-amplified neuroblastoma through neutralization of MCL-1, inducing synergistic cell killing when combined with venetoclax. Finally, the standard-of-care drug cocktail cyclophosphamide and topotecan reduces the apoptotic threshold of neuroblastoma, thus setting the stage for robust combination efficacy with venetoclax. In all cases, these rational combinations translated to in vivo tumor regressions in MYCN-amplified patient-derived xenograft models. Venetoclax is currently being evaluated in pediatric patients in the clinic, including neuroblastoma (NCT03236857). Although establishment of safety is still ongoing, the data disclosed herein indicate rational and clinically actionable combination strategies that could potentiate the activity of venetoclax in patients with amplified MYCN with neuroblastoma.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Gene Amplification , Gene Expression Regulation, Neoplastic/drug effects , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/drug therapy , Animals , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Cell Proliferation , Cyclophosphamide/administration & dosage , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Sulfonamides/administration & dosage , Topotecan/administration & dosage , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33762304

ABSTRACT

MYCN-amplified neuroblastoma is a lethal subset of pediatric cancer. MYCN drives numerous effects in the cell, including metabolic changes that are critical for oncogenesis. The understanding that both compensatory pathways and intrinsic redundancy in cell systems exists implies that the use of combination therapies for effective and durable responses is necessary. Additionally, the most effective targeted therapies exploit an "Achilles' heel" and are tailored to the genetics of the cancer under study. We performed an unbiased screen on select metabolic targeted therapy combinations and correlated sensitivity with over 20 subsets of cancer. We found that MYCN-amplified neuroblastoma is hypersensitive to the combination of an inhibitor of the lactate transporter MCT1, AZD3965, and complex I of the mitochondrion, phenformin. Our data demonstrate that MCT4 is highly correlated with resistance to the combination in the screen and lowly expressed in MYCN-amplified neuroblastoma. Low MCT4 combines with high expression of the MCT2 and MCT1 chaperone CD147 in MYCN-amplified neuroblastoma, altogether conferring sensitivity to the AZD3965 and phenformin combination. The result is simultaneous disruption of glycolysis and oxidative phosphorylation, resulting in dramatic disruption of adenosine triphosphate (ATP) production, endoplasmic reticulum stress, and cell death. In mouse models of MYCN-amplified neuroblastoma, the combination was tolerable at concentrations where it shrank tumors and did not increase white-blood-cell toxicity compared to single drugs. Therefore, we demonstrate that a metabolic combination screen can identify vulnerabilities in subsets of cancer and put forth a metabolic combination therapy tailored for MYCN-amplified neuroblastoma that demonstrates efficacy and tolerability in vivo.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Electron Transport Complex I/antagonists & inhibitors , Monocarboxylic Acid Transporters/antagonists & inhibitors , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/drug therapy , Symporters/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Basigin/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Electron Transport Complex I/metabolism , Gene Amplification , Humans , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Monocarboxylic Acid Transporters/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Phenformin/pharmacology , Phenformin/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Symporters/metabolism , Thiophenes/pharmacology , Thiophenes/therapeutic use , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...