Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Biomater Adv ; 161: 213886, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735200

ABSTRACT

Altering the route of uptake by the cells is an attractive strategy to overcome drug-receptor adaptation problems. Carbon nanoparticles (CNPs) with emission beyond tissue autofluorescence for imaging biological tissues were used to study the phenomenon of uptake by the cells. In this regard, red-emitting carbon nanoparticles (CNPs) were synthesized and incorporated onto lipid microbubbles (MBs). The CNPs showed red emissions in the range of 640 nm upon excitation with 480 nm wavelength of light. Atomic force microscopic and confocal microscopic images showed the successful loading of CNPs onto the MB. Carbon nanoparticle loaded microbubbles (CNP-MBs) were treated with NIH 3 T3 cells at different concentrations. Confocal microscopic imaging studies confirm the presence of CNPs inside the treated cells. Cytotoxicity studies revealed that the CNPs showed minimal toxicity towards cells after loading onto MBs. The CNPs are usually taken up by the cells through the clathrin-mediated (CME) pathway, but when loaded onto MBs, the mechanism of uptake of CNPs is altered, and the uptake by the cells was observed even in the presence of inhibitors for the CME pathway. Loading CNPs onto MBs resulted in the uptake of CNPs by the cell through micropinocytosis and sonophoresis in the presence of ultrasound. The in vivo uptake CNP-MBs were performed in Danio rerio (Zebrafish larvae). This study provides insights into altering the uptake pathway through reformulation by loading nanoparticles onto MBs.


Subject(s)
Carbon , Microbubbles , Nanoparticles , Zebrafish , Animals , Carbon/chemistry , Mice , Nanoparticles/chemistry , NIH 3T3 Cells , Drug Delivery Systems/methods
2.
ACS Omega ; 9(11): 12307-12330, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38524492

ABSTRACT

Liquid marbles (LMs) are droplets encapsulated with powders presenting varied roughness and wettability. These LMs have garnered a lot of attention due to their dual properties of leakage-free and quick transport on both solid and liquid surfaces. These droplets are in a Cassie-Baxter wetting state sitting on both roughness and air pockets existing between particles. They are also reminiscent of the state of a drop on a superhydrophobic (SH) surface. In this review, LMs and bare droplets on SH surfaces are comparatively investigated in terms of two aspects: interfacial and dynamical. LMs present a fascinating class of soft matter due to their superior interfacial activity and their remarkable stability. Inherently hydrophobic powders form stable LMs by simple rolling; however, particles with defined morphologies and chemistries contribute to the varied stability of LMs. The factors contributing to this interesting robustness with respect to bare droplets are then identified by tests of stability such as evaporation and compression. Next, the dynamics of the impact of a drop on a hydrophobic powder bed to form LMs is studied vis-à̀-vis that of drop impact on flat surfaces. The knowledge from drop impact phenomena on flat surfaces is used to build and complement insights to that of drop impact on powder surfaces. The maximum spread of the drop is empirically understood in terms of dimensionless numbers, and their drawbacks are highlighted. Various stages of drop impact-spreading, retraction and rebound, splashing, and final outcome-are systematically explored on both solid and hard surfaces. The implications of crater formation and energy dissipations are discussed in the case of granular beds. While the drop impact on solid surfaces is extensively reviewed, deep interpretation of the drop impact on granular surfaces needs to be improved. Additionally, the applications of each step in the sequence of drop impact phenomena on both substrates are also identified. Next, the criterion for the formation of peculiar jammed LMs was examined. Finally, the challenges and possible future perspectives are envisaged.

3.
Mol Pharm ; 21(1): 76-86, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38051598

ABSTRACT

Drugs have been classified as fast, moderate, and poor crystallizers based on their inherent solid-state crystallization tendency. Differential scanning calorimetry-based heat-cool-heat protocol serves as a valuable tool to define the solid-state crystallization tendency. This classification helps in the development of strategies for stabilizing amorphous drugs. However, microscopic characteristics of the samples were generally overlooked during these experiments. In the present study, we evaluated the influence of microscopic cracks on the crystallization tendency of a poorly water-soluble model drug, celecoxib. Cracks developed in the temperature range of 0-10 °C during the cooling cycle triggered the subsequent crystallization of the amorphous phase. Nanoindentation study suggested minimal differences in mechanical properties between samples, although the cracked sample showed relatively inhomogeneous mechanical properties. Nuclei nourishment experiments suggested crack-assisted nucleation, which was supported by Raman data that revealed subtle changes in intermolecular interactions between cracked and uncracked samples. Celecoxib has been generally classified as class II, i.e., a drug with moderate crystallization tendency. Interestingly, classification of amorphous celecoxib may change depending on the presence or absence of cracks in the amorphous sample. Hence, subtle events such as microscopic cracks should be given due consideration while defining the solid-state crystallization tendency of drugs.


Subject(s)
Water , Crystallization , Celecoxib/chemistry , Drug Stability , Phase Transition , Calorimetry, Differential Scanning , Solubility
4.
Langmuir ; 39(51): 18971-18982, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38087401

ABSTRACT

In recent years, there has been a notable increase in the interest toward microfluidic devices for microbubble synthesis. The upsurge can be primarily attributed to the exceptional control these devices offer in terms of both the size and the size distribution of microbubbles. Among various microfluidic devices available, capillary-embedded T-junction microfluidic (CETM) devices have been extensively used for the synthesis of microbubbles. One distinguishing feature of CETM devices from conventional T-junction devices is the existence of a wall at the right-most end, which causes a backflow of the continuous phase at the mixing zone during microbubble formation. The back flow at the mixing zone can have several implications during microbubble formation. It can possibly affect the local velocity and shearing force at the mixing zone, which in turn can affect the size and production rate of the microbubbles. Therefore, in this work, we experimentally and computationally understand the process of microbubble formation in CETM devices. The process is modeled using computational fluid dynamics (CFD) with the volume-of-fluid approach, which solves the Navier-Stokes equations for both the gas and liquid phases. Three scenarios with a constant liquid velocity of 0.053 m/s with varying gas velocity and three with a constant gas velocity of 0.049 m/s at different liquid velocities were explored. Increase in the liquid and gas velocity during microbubble formation was found to enhance production rates in both experiments and simulations. Additionally, the change in microbubble size with the change in liquid velocity was found to agree closely with the findings of the simulation with a coefficient of variation of 10%. When plotted against the time required for microbubble generation, the fluctuations in the pressure showed recurrent crests and troughs throughout the microbubble formation process. The understanding of microbubble formation in CETM devices in the presence of backflow will allow improvement in size reduction of microbubbles.

5.
J Acoust Soc Am ; 153(4): 2324, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37092939

ABSTRACT

Limited work has been reported on the acoustic and physical characterization of protein-shelled UCAs. This study characterized bovine serum albumin (BSA)-shelled microbubbles filled with perfluorobutane gas, along with SonoVue, a clinically approved contrast agent. Broadband attenuation spectroscopy was performed at room (23 ± 0.5 °C) and physiological (37 ± 0.5 °C) temperatures over the period of 20 min for these agents. Three size distributions of BSA-shelled microbubbles, with mean sizes of 1.86 µm (BSA1), 3.54 µm (BSA2), and 4.24 µm (BSA3) used. Viscous and elastic coefficients for the microbubble shell were assessed by fitting de Jong model to the measured attenuation spectra. Stable cavitation thresholds (SCT) and inertial cavitation thresholds (ICT) were assessed at room and physiological temperatures. At 37 °C, a shift in resonance frequency was observed, and the attenuation coefficient was increased relative to the measurement at room temperature. At physiological temperature, SCT and ICT were lower than the room temperature measurement. The ICT was observed to be higher than SCT at both temperatures. These results enhance our understanding of temperature-dependent properties of protein-shelled UCAs. These findings study may guide the rational design of protein-shelled microbubbles and help choose suitable acoustic parameters for applications in imaging and therapy.


Subject(s)
Contrast Media , Microbubbles , Phospholipids , Serum Albumin, Bovine , Sulfur Hexafluoride , Ultrasonography , Serum Albumin, Bovine/chemistry , Temperature , Contrast Media/chemical synthesis , Contrast Media/chemistry , Phospholipids/chemistry , Sulfur Hexafluoride/chemistry , Acoustics , Particle Size
6.
Nanoscale Adv ; 4(5): 1375-1386, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-36133687

ABSTRACT

Bright fluorescent nanoparticles with excitation and emission towards the red end of the spectrum are highly desirable in the field of bioimaging. We present here a new class of organic carbon-based nanoparticles (CNPs) with a robust quantum yield and fluorescence towards the red region of the spectrum. Using organic substrates such as para-phenylenediamine (PPDA) dispersed in diphenyl ether under reflux conditions, we achieved scalable amounts of CNPs with an average size of 27 nm. These CNPs were readily taken up by different mammalian cells, and we show that they prefer clathrin-mediated endocytosis for their cellular entry route. Not only can these CNPs be specifically taken up by cells, but they also stimulate cellular processes such as cell invasion from 3D spheroid models. This new class of CNPs, which have sizes similar to those of proteinaceous ligands, hold immense potential for their surface functionalization. These could be explored as promising bioimaging agents for biomedical imaging and intracellular drug delivery.

7.
Langmuir ; 38(36): 10917-10933, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36018789

ABSTRACT

Long-term stability of microbubbles is crucial to their effectiveness. Using a new microfluidic device connecting three T-junction channels of 100 µm in series, stable monodisperse SiQD-loaded bovine serum albumin (BSA) protein microbubbles down to 22.8 ± 1.4 µm in diameter were generated. Fluorescence microscopy confirmed the integration of SiQD on the microbubble surface, which retained the same morphology as those without SiQD. The microbubble diameter and stability in air were manipulated through appropriate selection of T-junction numbers, capillary diameter, liquid flow rate, and BSA and SiQD concentrations. A predictive computational model was developed from the experimental data, and the number of T-junctions was incorporated into this model as one of the variables. It was illustrated that the diameter of the monodisperse microbubbles generated can be tailored by combining up to three T-junctions in series, while the operating parameters were kept constant. Computational modeling of microbubble diameter and stability agreed with experimental data. The lifetime of microbubbles increased with increasing T-junction number and higher concentrations of BSA and SiQD. The present research sheds light on a potential new route employing SiQD and triple T-junctions to form stable, monodisperse, multi-layered, and well-characterized protein and quantum dot-loaded protein microbubbles with enhanced stability for the first time.


Subject(s)
Microbubbles , Quantum Dots , Lab-On-A-Chip Devices , Microfluidics , Serum Albumin, Bovine , Silicon
8.
ACS Appl Bio Mater ; 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35960932

ABSTRACT

Porphyrin is known to enable the photodynamic effect during cancer drug delivery and molecular imaging. However, its hydrophobicity and tendency to aggregate in an aqueous medium create a significant hurdle for its use as an anticancer drug. Loading porphyrin onto biocompatible delivery vehicles can enhance its efficacy. This can be achieved by using gas-filled microbubbles that can be administered intravenously. This study aimed at developing near-infrared (NIR)-active porphyrin-loaded lipid microbubbles with anticancer activity enhanced by sonodynamic and photodynamic effects. The porphyrin-loaded microbubbles were studied for their cell toxicity, cellular uptake of porphyrin, and effect on cellular three-dimensional (3D) invasion of breast cancer cells (MDA-MB-231) in cellulo. Toxicity studies in zebrafish larvae (Danio rerio) in the presence and absence of photodynamic and sonodynamic therapy were also conducted. The results suggest that with a higher concentration of porphyrin loaded on microbubbles, the porphyrin-loaded microbubbles display a higher therapeutic effect facilitated by photodynamic and sonodynamic therapy, which results in enhanced cellular uptake and cellular toxicity. A lower concentration of loaded porphyrin microbubbles exhibits high cellular viability and good fluorescence intensity in the NIR region, which can be exploited for bioimaging applications.

9.
Langmuir ; 38(33): 10288-10304, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35943351

ABSTRACT

Microbubbles are tiny gas-filled bubbles that have a variety of applications in ultrasound imaging and therapeutic drug delivery. Microbubbles can be synthesized using a number of techniques including sonication, amalgamation, and saline shaking. These approaches can produce highly concentrated microbubble suspensions but offer minimal control over the size and polydispersity of the microbubbles. One of the simplest and effective methods for producing monodisperse microbubbles is capillary-embedded T-junction microfluidic devices, which offer great control over the microbubble size. However, lower production rates (∼200 bubbles/s) and large microbubble sizes (∼300 µm) limit the applicability of such devices for biomedical applications. To overcome the limitations of these technologies, we demonstrate in this work an alternative approach to combine a capillary-embedded T-junction device with ultrasound to enhance the generation of narrow-sized microbubbles in aqueous suspensions. Two T-junction microfluidic devices were connected in parallel and combined with an ultrasonic horn to produce lipid-coated SF6 core microbubbles in the size range of 1-8 µm. The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 106 bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 109/mL to ∼2.3 × 106/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 µm at the end of 30 days. The acoustic response of these microbubbles was examined using broadband attenuation spectroscopy, and flow phantom imaging was performed to determine the ability of these microbubble suspensions to enhance the contrast relative to the surrounding tissue. Overall, this approach of coupling ultrasound with microfluidic parallelization enabled the continuous production of stable microbubbles at high production rates and low polydispersity using simple T-junction devices.


Subject(s)
Lab-On-A-Chip Devices , Microbubbles , Acoustics , Contrast Media/chemistry , Suspensions , Ultrasonography/methods
10.
Langmuir ; 38(17): 5052-5062, 2022 05 03.
Article in English | MEDLINE | ID: mdl-34264681

ABSTRACT

Microfluidics is an efficient technique for continuous synthesis of monodispersed microbubbles. However, microbubbles produced using microfluidic devices possess lower stability due to quick dissolution of core gas when exposed to an aqueous environment. This work aims at generating highly stable monodispersed albumin microbubbles using microfluidic T-junction devices. Microbubble generation was facilitated by an aqueous phase consisting of bovine serum albumin (BSA) as a model protein and nitrogen (N2) gas. Microbubbles were chemically cross-linked using dilute glutaraldehyde (0.75% v/v) solution and thermally cross-linked by collecting microbubbles in hot water maintained at 368 (±2) K. These microbubbles were then subjected to in vitro dissolution in an air-saturated water. Microbubbles cross-linked with a combined treatment of thermal and chemical cross-linking (TC & CC) had longer dissolution time compared to microbubbles chemically cross-linked (CC) alone, thermally cross-linked (TC) alone, and non-cross-linked microbubbles. Circular dichroism (CD) spectroscopy analysis revealed that percent reduction in alpha-helices of BSA was higher for the combined treatment of TC & CC when compared to other treatments. In contrast to non-cross-linked microbubbles where microbubble shell dissolved completely, a significant shell detachment was observed during the final phase of the dissolution for cross-linked microbubbles captured using high speed camera, depending upon the extent of cross-linking of the microbubble shell. SEM micrographs of the microbubble shell revealed the shell thickness of microbubbles treated with TC & CC to be highest compared to only thermally or only chemically cross-linked microbubbles. Comparison of microbubble dissolution data to a mass transfer model showed that shell resistance to gas permeation was highest for microbubbles subjected to a combined treatment of TC & CC.


Subject(s)
Microbubbles , Microfluidics , Contrast Media/chemistry , Lab-On-A-Chip Devices , Serum Albumin, Bovine/chemistry , Water
11.
ACS Biomater Sci Eng ; 7(12): 5933-5942, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34856099

ABSTRACT

DNA has emerged as one of the smartest biopolymers to bridge the gap between chemical science and biology to design scaffolds like hydrogels by physical entanglement or chemical bonding with remarkable properties. We present here a completely new application of DNA-based hydrogels in terms of their capacity to stimulate membrane endocytosis, leading to enhanced cell spreading and invasion for cells in ex vivo 3D spheroids models. Multiscale simulation studies along with DLS data showed that the hydrogel formation was enhanced at lower temperature and it converts to liquid with increase in temperature. DNA hydrogels induced cell spreading as observed by the increase in cellular area by almost two-fold followed by an increase in the receptor expression, the endocytosis, and the 3D invasion potential of migrating cells. Our first results lay the foundation for upcoming diverse applications of hydrogels to probe and program various cellular and physiological processes that can have lasting applications in stem cell programming and regenerative therapeutics.


Subject(s)
Hydrogels , Spheroids, Cellular , DNA/genetics , Endocytosis
13.
AAPS PharmSciTech ; 22(1): 29, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33404968

ABSTRACT

In this work, carbamazepine (CBZ), an anticonvulsant drug was cocrystallized with several structurally complement coformers (coformers with amide, acid and hydrazide functional groups) to enhance its dissolution. CBZ formed a cocrystal phase with acetamide (ACE) when mixtures of CBZ and ACE (containing CBZ mole fractions, XCBZ of 0.25, 0.33, 0.5, and 0.67) were subjected to solid-state grinding (SSG), evaporative crystallization (EC), slurry conversion (SC), and slow cooling crystallization (SLC). Upon heating, the CBZ-ACE cocrystal phase formed from CBZ-ACE mixtures containing XCBZ of 0.25, 0.33 and 0.67 underwent solid-state phase transition to CBZ form I and CBZ cocrytsal phase obtained from the CBZ-ACE mixture containing XCBZ of 0.5 converted to CBZ form III. Interestingly, slow cooling cocrystallization experiments resulted in crystallization of a cocrystal as well as the CBZ dihydrate forms. The powder dissolution studies demonstrated that among the different CBZ-ACE-SSG cocrystal phases, CBZ-ACE-SSG-XCBZ-0.33 cocrystal exhibited 7.47 times improved dissolution whereas the CBZ eutectic phase with nicotinic acid hydrazide (NAH) exhibited 4.93 times increased dissolution when compared to raw CBZ.


Subject(s)
Anticonvulsants/chemistry , Carbamazepine/chemistry , Crystallization/methods , Molecular Conformation , Phase Transition , Powders , Solubility , X-Ray Diffraction
14.
Langmuir ; 36(39): 11429-11441, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32903006

ABSTRACT

This work focuses on the synthesis of oil-layered microbubbles using two microfluidic T-junctions in series and evaluation of the effectiveness of these microbubbles loaded with doxorubicin and curcumin for cell invasion arrest from 3D spheroid models of triple negative breast cancer (TNBC), MDA-MB-231 cell line. Albumin microbubbles coated in the drug-laden oil layer were synthesized using a new method of connecting two microfluidic T-mixers in series. Double-layered microbubbles thus produced consist of an innermost core of nitrogen gas encapsulated in an aqueous layer of bovine serum albumin (BSA) which in turn, is coated with an outer layer of silicone oil. In order to identify the process conditions leading to the formation of double-layered microbubbles, a regime map was constructed based on capillary numbers for aqueous and oil phases. The microbubble formation regime transitions from double-layered to single layer microbubbles and then to formation of single oil droplets upon gradual change in flow rates of aqueous and oil phases. In vitro dissolution studies of double-layered microbubbles in an air-saturated environment indicated that a complete dissolution of such bubbles produces an oil droplet devoid of a gas bubble. Incorporation of doxorubicin and curcumin was found to produce a synergistic effect, which resulted in higher cell deaths in 2D monolayers of TNBC cells and inhibition of cell proliferation from 3D spheroid models of TNBC cells compared to the control.


Subject(s)
Microbubbles , Microfluidics , Doxorubicin/pharmacology , Gases , Serum Albumin, Bovine
15.
Environ Res ; 191: 110119, 2020 12.
Article in English | MEDLINE | ID: mdl-32846177

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a neoteric virus belonging to the beta coronavirus class has created a global health concern, responsible for an outbreak of severe acute respiratory illness, the COVID-19 pandemic. Infected hosts exhibit diverse clinical features, ranging from asymptomatic to severe symptoms in their genital organs, respiratory, digestive, and circulatory systems. Considering the high transmissibility (R0: ≤6.0) compared to Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV, the quest for the clinical development of suitable antiviral nanotherapeutics (NTPs) is incessant. We are presenting a systematic review of the literature published between 2003 and 2020 to validate the hypothesis that the pharmacokinetics, collateral acute/chronic side effects of nano drugs and spike proteins arrangement of coronaviruses can revolutionize the therapeutic approach to cure COVID-19. Our aim is also to critically assess the slow release kinetics and specific target site chemical synthesis influenced competence of NTPs and nanotoxicity based antiviral actions, which are commonly exploited in the synthesis of modulated nanomedicines. The pathogenesis of novel virulent pathogens at the cellular and molecular levels are also considered, which is of utmost importance to characterize the emerging nano-drug agents as diagnostics or therapeutics or viral entry inhibitors. Such types of approaches trigger the scientists and policymakers in the development of a conceptual framework of nano-biotechnology by linking nanoscience and virology to present a smart molecular diagnosis/treatment for pandemic viral infections.


Subject(s)
Antiviral Agents , Coronavirus Infections , Drug Delivery Systems , Nanotechnology , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Humans , Metabolic Networks and Pathways , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/drug effects
16.
ACS Omega ; 5(30): 19004-19013, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32775902

ABSTRACT

Bacterial resistance to antimicrobial drugs is one of the biggest threats to human health and novel drugs, and strategies are needed to obviate this resistance crisis. An innovative strategy for designing novel antimicrobial drugs is based on the hybridization of an antimicrobial agent with a second functional entity. Here, we use a cell-penetrating peptide-octaarginine (R8) as the second functional entity and develop a complex or hybrid of R8 and curcumin that possibly targets the bacterial cell membrane. Minimum inhibitory concentration assays show that the antibacterial activity of the complex is enhanced in a synergistic manner and rapid killing kinetics are obtained, emphasizing a bactericidal mode of action. In addition, electron microscopy images reveal bacterial membrane disruption by the complex. The R8-curcumin complex also displays activity against HeLa cells.

17.
Int J Pharm ; 587: 119667, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32702448

ABSTRACT

Curcumin (CUR) is a Biopharmaceutics Classification System (BCS) class IV drug with poor aqueous solubility and low permeability. The dissolution of CUR can be enhanced through the cocrystallization approach. In this work, we report a new cocrystal phase of CUR with trimesic acid (TMA) with the enhanced dissolution of CUR. Cytotoxicity and cell invasion assays were conducted on (2D) monolayers and three-dimensional (3D) tumor models of triple-negative breast cancer (TNBC) cells, MDA-MB-231 using the new CUR-TMA cocrystal phase along with different CUR solid forms prepared in our previous works. The cytotoxicity and internalization assays conducted on 2D monolayers indicated that all CUR multicomponent solid forms except Curcumin-Folic Acid Dihydrate (CUR-FAD) (1:1) coamorphous solid exhibited enhanced bioavailability than unprocessed CUR. Cell invasion assay conducted on 3D tumor spheroid models showed that Curcumin-Hydroxyquinol (CUR-HXQ) cocrystal completely inhibited cell invasion whereas CUR-FAD (1:1) coamorphous solid induced enhanced invasion of cells from spheroid models.


Subject(s)
Antineoplastic Agents , Curcumin , Pharmaceutical Preparations , Triple Negative Breast Neoplasms , Antineoplastic Agents/therapeutic use , Humans , Solubility , Tricarboxylic Acids/therapeutic use , Triple Negative Breast Neoplasms/drug therapy
18.
Int J Pharm ; 585: 119489, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32522504

ABSTRACT

Spray drying is an industrially viable technique that can be used for modulation of the physical form of Active Pharmaceutical Ingredients (API), which is governed by inherent crystallization tendency and processing parameters during spray drying. In the current study, we investigated the role of solvent in differential phase behavior of celecoxib, a poor crystallizer, during spray drying and unveiled the underlying mechanisms. 1% w/v solutions of celecoxib in three different compositions of methanol (M)-water (W) solvent system were spray dried using a laboratory spray dryer. The proportions were 0, 5 and 10% v/v of water in methanol (MW0, MW5, and MW10, respectively). Percentage crystallinity of the spray dried products were evaluated using modulated differential scanning calorimetry and was in the order MW10 > MW5 > MW0 (i.e. 18.52% > 8.13% > 0%). Solution-state and solid-state crystallization events responsible for the experimental observations were probed using microscopy, Raman spectroscopy, and non-isothermal crystallization studies. An intermediate amorphous phase was generated for the studied samples, which underwent crystallization under the influence of chamber temperature for MW5 and MW10. Additionally, liquid-liquid phase separation (LLPS) at very high level of supersaturation led to relatively higher crystallinity for MW10. Insights from this work provide the basis for understanding of probable phase behavior of poor crystallizers during spray drying.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Celecoxib/chemical synthesis , Solvents/chemical synthesis , Spray Drying , Anti-Inflammatory Agents, Non-Steroidal/analysis , Calorimetry, Differential Scanning/methods , Celecoxib/analysis , Solvents/analysis , Spectrum Analysis, Raman/methods , X-Ray Diffraction/methods
19.
Soft Matter ; 16(8): 2149-2163, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32016261

ABSTRACT

The effectiveness of microbubbles as ultrasound contrast agents and targeted drug delivery vehicles depends on their persistence in blood. It is therefore necessary to understand the dissolution behavior of microbubbles in an aqueous medium. While there are several reports available in the literature on the dissolution of lipid microbubbles, there are no reports available on the dissolution kinetics of protein microbubbles. Moreover, shell parameters such as interfacial tension, shell resistance and shell elasticity/stiffness which characterize microbubble shells, have been reported for lipid shells but no such data are available for protein shells. Accordingly, this work was focused on capturing the dissolution behavior of protein microbubbles and estimation of shell parameters such as surface tension, shell resistance and shell elasticity. Bovine serum albumin (BSA) was used as a model protein and microbubbles were synthesized using sonication. During dissolution, a large portion of the protein shell was found to disengage from the gas-liquid interface after a stagnant dissolution phase, leading to a sudden disappearance of the microbubbles due to complete dissolution. In order to estimate shell parameters, microbubble dissolution kinetic data (radius vs. time) was fit numerically to a mass transfer model describing a microbubble dissolution process. Analysis of the results shows that the interfacial tension increases drastically and the shell resistance reduces significantly, as protein molecules leave the gas-liquid interface. Furthermore, the effect of processing conditions such as preheating temperature, microbubble size, and core gas and shell composition on the protein shell parameters was also evaluated.


Subject(s)
Serum Albumin, Bovine/chemistry , Animals , Cattle , Contrast Media/chemistry , Drug Delivery Systems/instrumentation , Elasticity , Kinetics , Lipids/chemistry , Microbubbles , Solubility , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL
...