Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Phys Rev Lett ; 125(3): 033601, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32745430

ABSTRACT

The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons-the most elementary states of light-can be generated on demand in atomic and solid state emitters. Two-photon states are also key quantum assets, but achieving them in individual emitters is challenging because their generation rate is much slower than competing one-photon processes. We demonstrate that atomically thin plasmonic nanostructures can harness two-photon spontaneous emission, resulting in giant far field two-photon production, a wealth of resonant modes enabling tailored photonic and plasmonic entangled states, and plasmon-assisted single-photon creation orders of magnitude more efficient than standard one-photon emission. We unravel the two-photon spontaneous emission channels and show that their spectral line shapes emerge from an intricate interplay between Fano and Lorentzian resonances. Enhanced two-photon spontaneous emission in two-dimensional nanostructures paves the way to an alternative efficient source of light-matter entanglement for on-chip quantum information processing and free-space quantum communications.

2.
Phys Rev Lett ; 123(12): 120401, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31633977

ABSTRACT

An atom moving in a vacuum at constant velocity and parallel to a surface experiences a frictional force induced by the dissipative interaction with the quantum fluctuations of the electromagnetic field. We show that the combination of nonequilibrium dynamics, the anomalous Doppler effect, and spin-momentum locking of light mediates an intriguing interplay between the atom's translational and rotational motion. In turn, this deeply affects the drag force in a way that is reminiscent of classical rolling friction. Our fully non-Markovian and nonequilibrium description reveals counterintuitive features characterizing the atom's velocity-dependent rotational dynamics. These results prompt interesting directions for tuning the interaction and for investigating nonequilibrium dynamics as well as the properties of confined light.

3.
Phys Rev Lett ; 117(10): 100402, 2016 Sep 02.
Article in English | MEDLINE | ID: mdl-27636458

ABSTRACT

Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the complexity of such nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable. In particular, it is often assumed that spatially separated components of a system thermalize with their immediate surroundings, although the global state of the system is out of equilibrium. This powerful assumption reduces the complexity of nonequilibrium systems to the local application of well-founded equilibrium concepts. While this technique appears to be consistent for the description of some phenomena, we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the drag force. Our results show that the correlations among the components of driven, but steady-state, quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination of this approach for describing the physics of nonequilibrium systems.

4.
Opt Express ; 22(10): 12424-37, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24921360

ABSTRACT

Spoof surface modes on nanostructured metallic surfaces are known to have tailorable dispersion dependent on the geometric characteristics of the periodic pattern. Here we examine the spoof plasmon dispersion on an isolated grating and a grating-planar mirror cavity configuration. The spoof polariton dispersion in the cavity is obtained using the scattering matrix approach, and the related differential modal density of states is introduced to obtain the mode dispersion and classify the cavity polariton modes. The grating-mirror cavity geometry is an example of periodically nanostructured metals above a planar ground plane. The properties discussed here are relevant for applications ranging from thin electromagnetic perfect absorbers to near-field radiative heat transfer.

5.
Phys Rev Lett ; 107(17): 171101, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-22107498

ABSTRACT

We report measurements of the short-range forces between two macroscopic gold-coated plates using a torsion pendulum. The force is measured for separations between 0.7 and 7 µm and is well described by a combination of the Casimir force, including the finite-temperature correction, and an electrostatic force due to patch potentials on the plate surfaces. We use our data to place constraints on the Yukawa-type "new" forces predicted by theories with extra dimensions. We establish a new best bound for force ranges 0.4-4 µm and, for forces mediated by gauge bosons propagating in (4+n) dimensions and coupling to the baryon number, extract a (4+n)-dimensional Planck scale lower limit of M(*)>70 TeV.

7.
Phys Rev Lett ; 105(21): 210401, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-21231273

ABSTRACT

Disordered geometrical boundaries such as rough surfaces induce important modifications to the mode spectrum of the electromagnetic quantum vacuum. In analogy to Anderson localization of waves induced by a random potential, here we show that the Casimir-Polder interaction between a cold atomic sample and a rough surface also produces localization phenomena. These effects, that represent a macroscopic manifestation of disorder in quantum vacuum, should be observable with Bose-Einstein condensates expanding in proximity of rough surfaces.

8.
Phys Rev Lett ; 103(6): 060401, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19792543

ABSTRACT

We have measured the short-range attractive force between crystalline Ge plates, and found contributions from both the Casimir force and an electrical force possibly generated by surface patch potentials. Using a model of surface patch effects that generates an additional force due to a distance dependence of the apparent contact potential, the electrical force was parametrized using data at distances where the Casimir force is relatively small. Extrapolating this model, to provide a correction to the measured force at distances less than 5 microm, shows a residual force that is in agreement, within experimental uncertainty, with five models that have been used to calculate the Casimir force.

9.
Phys Rev Lett ; 100(18): 183602, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18518371

ABSTRACT

Based on a generalization of the Lifshiftz theory, we calculate Casimir forces involving magnetodielectric and possibly anisotropic metamaterials, focusing on the possibility of repulsive forces. It is found that Casimir repulsion decreases with magnetic dissipation, and even a small Drude background in metallic-based metamaterials acts to make attractive a Casimir force that would otherwise be predicted to be repulsive. The sign of the force also depends sensitively on the degree of optical anisotropy of the metamaterial and on the form of the frequency dependency of the magnetic response.

10.
Phys Rev Lett ; 91(21): 210403, 2003 Nov 21.
Article in English | MEDLINE | ID: mdl-14683283

ABSTRACT

Decoherence causes entropy increase that can be quantified using, e.g., the purity sigma=Trrho(2). When the Hamiltonian of a quantum system is perturbed, its sensitivity to such perturbation can be measured by the Loschmidt echo M(t). It is given by the squared overlap between the perturbed and unperturbed state. We describe the relation between the temporal behavior of sigma(t) and the average Mmacr;(t). In this way we show that the decay of the Loschmidt echo can be analyzed using tools developed in the study of decoherence. In particular, for systems with a classically chaotic Hamiltonian the decay of sigma and Mmacr; has a regime where it is dominated by the Lyapunov exponents.

SELECTION OF CITATIONS
SEARCH DETAIL