Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biochem ; 461(1-2): 23-36, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31309409

ABSTRACT

Antibiotics are the front-line treatment against many bacterial infectious diseases in human. The excessive and long-term use of antibiotics in human cause several side effects. It is important to understand the underlying molecular mechanisms of action of antibiotics in the host cell to avoid the side effects due to the prevalent uses. In the current study, we investigated the crosstalk between mitochondria and lysosomes in the presence of widely used antibiotics: erythromycin (ERM) and clindamycin (CLDM), which target the 50S subunit of bacterial ribosomes. We report here that both ERM and CLDM induced caspase activation and cell death in several different human cell lines. The activity of the mitochondrial respiratory chain was compromised in the presence of ERM and CLDM leading to bioenergetic crisis and generation of reactive oxygen species. Antibiotics treatment impaired autophagy flux and lysosome numbers, resulting in decreased removal of damaged mitochondria through mitophagy, hence accumulation of defective mitochondria. We further show that over-expression of transcription factor EB (TFEB) increased the lysosome number, restored mitochondrial function and rescued ERM- and CLDM-induced cell death. These studies indicate that antibiotics alter mitochondria and lysosome interactions leading to apoptotsis and may develop a novel approach for targeting inter-organelle crosstalk to limit deleterious antibiotic-induced side effects.


Subject(s)
Apoptosis/drug effects , Clindamycin/pharmacology , Erythromycin/pharmacology , Lysosomes/metabolism , Mitochondria/metabolism , Organelle Biogenesis , Anti-Bacterial Agents/pharmacology , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Cell Line , Humans , Lysosomes/drug effects , Membrane Fusion/drug effects , Mitochondria/drug effects , Mitophagy/drug effects , Models, Biological , Reactive Oxygen Species/metabolism , Ribosome Subunits, Large, Bacterial/metabolism
2.
Mol Neurobiol ; 55(6): 4689-4701, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28710704

ABSTRACT

Parkinson's disease (PD) is complex neurological disorder and is prevalent in the elderly population. This is primarily due to loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) region of the brain. The modulators of the selective loss of dopaminergic neurons in PD are still not well understood. The small non-coding RNAs specifically miRNAs fine-tune the protein levels by post-transcriptional gene regulation. The role of miRNAs in PD pathogenesis is still not well characterized. In the current study, we identified the miRNA expression pattern in 6-OHDA-induced PD stress condition in SH-SY5Y, dopaminergic neuronal cell line. The targets of top 5 miRNAs both up- and down regulated were analyzed by using StarBase. The putative pathways of identified miRNAs included neurotrophin signaling, neuronal processes, mTOR, and cell death. The level of miR-5701 was significantly downregulated in the presence of 6-OHDA. The putative targets of miR-5701 miRNA include genes involved in lysosomal biogenesis and mitochondrial quality control. The transfection of miR-5701 mimic decreased the transcript level of VCP, LAPTM4A, and ATP6V0D1. The expression of miR-5701 mimic induces mitochondrial dysfunction, defect in autophagy flux, and further sensitizes SH-SY5Y cells to 6-OHDA-induced cell death. To our knowledge, the evidence in the current study demonstrated the dysregulation of specific pattern of miRNAs in PD stress conditions. We further characterized the role of miR-5701, a novel miRNA, as a potential regulator of the mitochondrial and lysosomal function determining the fate of neurons which has important implication in the pathogenesis of PD.


Subject(s)
Lysosomes/metabolism , MicroRNAs/metabolism , Mitochondria/metabolism , Parkinson Disease/genetics , Stress, Physiological/genetics , Apoptosis/genetics , Autophagosomes/metabolism , Cell Line, Tumor , Humans , Membrane Fusion , MicroRNAs/genetics , Models, Biological , Neurons/metabolism , Neurons/pathology , Oxidopamine , Parkinson Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...