Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Curr Opin Clin Nutr Metab Care ; 27(1): 31-39, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38085662

ABSTRACT

PURPOSE OF REVIEW: Casein glycomacropeptide (CGMP) is a milk-derived bioactive sialyated phosphorylated peptide with distinctive nutritional and nutraceutical properties, produced during the cheese making process. It comprises 20-25% of total protein in whey products. CGMP is low in phenylalanine (Phe) and provides an alternative to Phe-free amino acids as a source of protein equivalent for patients with phenylketonuria (PKU). The amino acid sequence of CGMP is adapted by adding the amino acids histidine, leucine, tyrosine, arginine and tryptophan to enable its suitability in PKU. CGMP has potential antibacterial, antioxidative, prebiotic, remineralizing, digestion /metabolism and immune-modulating properties. The aim of this review is to assess the evidence for the role of CGMP in the management of PKU. RECENT FINDINGS: In PKU, there is no agreement concerning the amino acid composition of CGMP protein substitutes and consequently the nutritional composition varies between products. Although there is evidence in patients or animal models that CGMP has possible beneficial effects on gut microbiota and bone health, the results are inconclusive. Data on kinetic advantage is limited. Most studies report an increase in blood Phe levels with CGMP. Appropriate adaptations and reduction of dietary Phe intake should be made to compensate for the residual Phe content of CGMP, particularly in children. Data from short term studies indicate improved palatability of CGMP when compared to Phe-free amino acids. SUMMARY: In PKU, CGMP with supplementary amino acids, offers a safe low Phe nitrogen source. Current scientific evidence is unconvincing about its bioactive advantage in PKU. Further longitudinal research is necessary.


Subject(s)
Caseins , Phenylketonurias , Child , Animals , Humans , Dietary Supplements , Amino Acids , Phenylketonurias/drug therapy , Phenylketonurias/metabolism , Phenylalanine/metabolism
2.
Nutrients ; 15(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38068761

ABSTRACT

In phenylketonuria (PKU), an important component of the UK dietary management system is a 50 mg phenylalanine (Phe)/1 g protein exchange system used to allocate the Phe/natural protein intakes according to individual patient tolerance. Any foods containing protein ≤ 0.5 g/100 g or fruits/vegetables containing Phe ≤ 75 mg/100 g are allowed without measurement or limit. In children with PKU, we aimed to assess the difference between the prescribed natural protein intake and their actual consumed intake, and to calculate the natural protein/Phe intake from foods given without measurement or restriction. Over a 6-month duration, three one-day diet diaries were collected every month by caregivers of children with PKU at the beginning of a follow-up study. Dietary intakes of Phe, as well as natural and total protein intakes, were calculated using Nutritics® (v5.09). Weekly blood Phe spots were collected by caregivers. The target blood Phe level was ≤360 µmol/L for ages up to 12 years and ≤600 µmol/L for ages ≥12 years. Sixteen early treated children (69% females) with PKU were recruited. The median age was 11 years (range: 9-13), and most had classical PKU (n = 14/16). A median of 18 (range 12-18) one-day diaries and 22 blood spots were analysed for each subject over 6 months. The median prescribed natural protein was 6 g/day (range: 3-27), but when calculated, the actual median intake from all foods consumed was 10 g/day (range: 4-37). The median prescribed Phe was 300 mg/day (range: 150-1350), but the actual median intake was 500 mg/day (range: 200-1850). The median difference between the prescribed and actual natural protein daily intakes was +4 g/day (range: -2.5 to +11.5), with a median percentage increase of 40% for natural protein/Phe intake (p < 0.001). The median blood Phe level was 250 µmol/L (range 20-750), with 91% of blood Phe levels within the target range. Only one patient (11 years) had less than 75% of their blood Phe levels within the target range. The UK Phe exchange system provides flexibility in the dietary management of PKU. With this method, the actual natural protein intake was 167% higher than the prescribed amount. Although this led to a variable daily protein intake, the majority of children (n = 15/16) experienced no deterioration in their metabolic control.


Subject(s)
Phenylketonurias , Child , Female , Humans , Male , Follow-Up Studies , Diet , Phenylalanine , Prescriptions
3.
Article in English | MEDLINE | ID: mdl-38085643

ABSTRACT

PURPOSE OF REVIEW: Casein glycomacropeptide (CGMP) is a milk-derived bioactive sialyated phosphorylated peptide with distinctive nutritional and nutraceutical properties, produced during the cheese making process. It comprises 20-25% of total protein in whey products. CGMP is low in phenylalanine (Phe) and provides an alternative to Phe-free amino acids as a source of protein equivalent for patients with phenylketonuria (PKU). The amino acid sequence of CGMP is adapted by adding the amino acids histidine, leucine, tyrosine, arginine and tryptophan to enable its suitability in PKU. CGMP has potential antibacterial, antioxidative, prebiotic, remineralizing, digestion /metabolism and immune-modulating properties. The aim of this review is to assess the evidence for the role of CGMP in the management of PKU. RECENT FINDINGS: In PKU, there is no agreement concerning the amino acid composition of CGMP protein substitutes and consequently the nutritional composition varies between products. Although there is evidence in patients or animal models that CGMP has possible beneficial effects on gut microbiota and bone health, the results are inconclusive. Data on kinetic advantage is limited. Most studies report an increase in blood Phe levels with CGMP. Appropriate adaptations and reduction of dietary Phe intake should be made to compensate for the residual Phe content of CGMP, particularly in children. Data from short term studies indicate improved palatability of CGMP when compared to Phe-free amino acids. SUMMARY: In PKU, CGMP with supplementary amino acids, offers a safe low Phe nitrogen source. Current scientific evidence is unconvincing about its bioactive advantage in PKU. Further longitudinal research is necessary.

4.
Mol Genet Metab Rep ; 37: 101020, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053940

ABSTRACT

Ornithine transcarbamylase deficiency (OTCD) is an X-linked defect of ureagenesis and the most common urea cycle disorder. Patients present with hyperammonemia causing neurological symptoms, which can lead to coma and death. Liver transplantation (LT) is the only curative therapy, but has several limitations including organ shortage, significant morbidity and requirement of lifelong immunosuppression. This study aims to identify the characteristics and outcomes of patients who underwent LT for OTCD. We conducted a retrospective study for OTCD patients from 5 UK centres receiving LT in 3 transplantation centres between 2010 and 2022. Patients' demographics, family history, initial presentation, age at LT, graft type and pre- and post-LT clinical, metabolic, and neurocognitive profile were collected from medical records. A total of 20 OTCD patients (11 males, 9 females) were enrolled in this study. 6/20 had neonatal and 14/20 late-onset presentation. 2/20 patients had positive family history for OTCD and one of them was diagnosed antenatally and received prospective treatment. All patients were managed with standard of care based on protein-restricted diet, ammonia scavengers and supplementation with arginine and/or citrulline before LT. 15/20 patients had neurodevelopmental problems before LT. The indication for LT was presence (or family history) of recurrent metabolic decompensations occurring despite standard medical therapy leading to neurodisability and quality of life impairment. Median age at LT was 10.5 months (6-24) and 66 months (35-156) in neonatal and late onset patients, respectively. 15/20 patients had deceased donor LT (DDLT) and 5/20 had living related donor LT (LDLT). Overall survival was 95% with one patient dying 6 h after LT. 13/20 had complications after LT and 2/20 patients required re-transplantation. All patients discontinued dietary restriction and ammonia scavengers after LT and remained metabolically stable. Patients who had neurodevelopmental problems before LT persisted to have difficulties after LT. 1/5 patients who was reported to have normal neurodevelopment before LT developed behavioural problems after LT, while the remaining 4 maintained their abilities without any reported issues. LT was found to be effective in correcting the metabolic defect, eliminates the risk of hyperammonemia and prolongs patients' survival.

5.
Nutrients ; 15(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38140392

ABSTRACT

Cardiovascular diseases are the main cause of mortality worldwide. Patients with phenylketonuria (PKU) may be at increased cardiovascular risk. This review provides an overview of clinical and metabolic cardiovascular risk factors, explores the connections between body composition (including fat mass and ectopic fat) and cardiovascular risk, and examines various methods for evaluating body composition. It particularly focuses on nutritional ultrasound, given its emerging availability and practical utility in clinical settings. Possible causes of increased cardiometabolic risk in PKU are also explored, including an increased intake of carbohydrates, chronic exposure to amino acids, and characteristics of microbiota. It is important to evaluate cardiovascular risk factors and body composition in patients with PKU. We suggest systematic monitoring of body composition to develop nutritional management and hydration strategies to optimize performance within the limits of nutritional therapy.


Subject(s)
Cardiovascular Diseases , Phenylketonurias , Humans , Anthropometry , Body Composition , Cardiovascular Diseases/etiology , Biomarkers , Phenylketonurias/complications , Body Mass Index
6.
Nutrients ; 15(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37630696

ABSTRACT

In phenylketonuria (PKU), natural protein tolerance is defined as the maximum natural protein intake maintaining a blood phenylalanine (Phe) concentration within a target therapeutic range. Tolerance is affected by several factors, and it may differ throughout a person's lifespan. Data on lifelong Phe/natural protein tolerance are limited and mostly reported in studies with low subject numbers. This systematic review aimed to investigate how Phe/natural protein tolerance changes from birth to adulthood in well-controlled patients with PKU on a Phe-restricted diet. Five electronic databases were searched for articles published until July 2020. From a total of 1334 results, 37 articles met the eligibility criteria (n = 2464 patients), and 18 were included in the meta-analysis. The mean Phe (mg/day) and natural protein (g/day) intake gradually increased from birth until 6 y (at the age of 6 months, the mean Phe intake was 267 mg/day, and natural protein intake was 5.4 g/day; at the age of 5 y, the mean Phe intake was 377 mg/day, and the natural protein intake was 8.9 g/day). However, an increase in Phe/natural protein tolerance was more apparent at the beginning of late childhood and was >1.5-fold that of the Phe tolerance in early childhood. During the pubertal growth spurt, the mean natural protein/Phe tolerance was approximately three times higher than in the first year of life, reaching a mean Phe intake of 709 mg/day and a mean natural protein intake of 18 g/day. Post adolescence, a pooled analysis could only be performed for natural protein intake. The mean natural protein tolerance reached its highest (32.4 g/day) point at the age of 17 y and remained consistent (31.6 g/day) in adulthood, but limited data were available. The results of the meta-analysis showed that Phe/natural protein tolerance (expressed as mg or g per day) increases with age, particularly at the beginning of puberty, and reaches its highest level at the end of adolescence. This needs to be interpreted with caution as limited data were available in adult patients. There was also a high degree of heterogeneity between studies due to differences in sample size, the severity of PKU, and target therapeutic levels for blood Phe control.


Subject(s)
Phenylalanine , Phenylketonurias , Child , Child, Preschool , Adolescent , Adult , Humans , Infant , Databases, Factual , Immune Tolerance , Longevity
7.
Nutrients ; 15(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37630769

ABSTRACT

(1) Background: Good adherence to a Phe-restricted diet supplemented with an adequate amount of a protein substitute (PS) is important for good clinical outcomes in PKU. Glycomacropeptide (cGMP)-PSs are innovative, palatable alternatives to amino acid-based PSs (AA-PS). This study aimed to evaluate a new cGMP-PS in liquid and powder formats in PKU. (2) Methods: Children and adults with PKU recruited from eight centres were prescribed at least one serving/day of cGMP-PS for 7-28 days. Adherence, acceptability, and gastrointestinal tolerance were recorded at baseline and the end of the intervention. The blood Phe levels reported as part of routine care during the intervention were recorded. (3) Results: In total, 23 patients (powder group, n = 13; liquid group, n = 10) completed the study. The majority assessed the products to be palatable (77% of powder group; 100% of liquid group) and well tolerated; the adherence to the product prescription was good. A total of 14 patients provided blood Phe results during the intervention, which were within the target therapeutic range for most patients (n = 11) at baseline and during the intervention. (4) Conclusions: These new cGMP-PSs were well accepted and tolerated, and their use did not adversely affect blood Phe control.


Subject(s)
Caseins , Peptide Fragments , Adult , Child , Humans , Powders , Dietary Supplements , Cyclic GMP
8.
Nutrients ; 15(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630788

ABSTRACT

(1) Background: Poor palatability, large volume, and lack of variety of some liquid and powdered protein substitutes (PSs) for patients with phenylketonuria (PKU) and tyrosinemia (TYR) can result in poor adherence. This study aimed to evaluate a new unflavoured, powdered GMP-based PS designed to be mixed into drinks, foods, or with other PSs, in patients with PKU and TYR. (2) Methods: Paediatric and adult community-based patients were recruited from eight metabolic centres and prescribed ≥1 sachet/day (10 g protein equivalent (PE)) of the Mix-In-style PS over 28 days. Adherence, palatability, GI tolerance, and metabolic control were recorded at baseline and follow-up. Patients who completed at least 7 days of intervention were included in the final analysis. (3) Results: Eighteen patients (3-45 years, nine males) with PKU (n = 12) and TYR (n = 6) used the Mix-In-style PS for ≥7 days (mean 26.4 days (SD 4.6), range 11-28 days) alongside their previous PS, with a mean intake of 16.7 g (SD 7.7) PE/day. Adherence was 86% (SD 25), and GI tolerance was stable, with n = 14 experiencing no/no new symptoms and n = 3 showing improved symptoms compared to baseline. Overall palatability was rated satisfactory by 78% of patients, who successfully used the Mix-In-style PS in various foods and drinks, including smoothies, squash, and milk alternatives, as a top-up to meet their protein needs. There was no concern regarding safety/metabolic control during the intervention. (4) Conclusions: The 'Mix-In'-style PS was well adhered to, accepted, and tolerated. Collectively, these data show that providing a flexible, convenient, and novel format of PS can help with adherence and meet patients' protein needs.


Subject(s)
Phenylketonurias , Tyrosinemias , Glycoproteins/adverse effects , Glycoproteins/therapeutic use , Glycopeptides/adverse effects , Glycopeptides/therapeutic use , Phenylketonurias/diet therapy , Humans , Male , Female , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Tyrosinemias/diet therapy , Treatment Outcome , Gastrointestinal Tract/metabolism , Food , Beverages
9.
Nutrients ; 15(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630793

ABSTRACT

INTRODUCTION: In phenylketonuria (PKU) changes in dietary patterns and behaviors in sapropterin-responsive populations have not been widely reported. We aimed to assess changes in food quality, mental health and burden of care in a paediatric PKU sapropterin-responsive cohort. METHODS: In an observational, longitudinal study, patient questionnaires on food frequency, neophobia, anxiety and depression, impact on family and burden of care were applied at baseline, 3 and 6-months post successful sapropterin-responsiveness testing (defined as a 30% reduction in blood phenylalanine levels). RESULTS: 17 children (10.8 ± 4.2 years) completed 6-months follow-up. Patients body mass index (BMI) z-scores remained unchanged after sapropterin initiation. Blood phenylalanine was stable. Natural protein increased (p < 0.001) and protein substitute intake decreased (p = 0.002). There were increases in regular cow's milk (p = 0.001), meat/fish, eggs (p = 0.005), bread (p = 0.01) and pasta (p = 0.011) intakes but special low-protein foods intake decreased. Anxiety (p = 0.016) and depression (p = 0.022) decreased in caregivers. The impact-on-family, familial-social impact (p = 0.002) and personal strain (p = 0.001) lessened. After sapropterin, caregivers spent less time on PKU tasks, the majority ate meals outside the home more regularly and fewer caregivers had to deny food choices to their children. CONCLUSION: There were significant positive changes in food patterns, behaviors and burden of care in children with PKU and their families after 6-months on sapropterin treatment.


Subject(s)
Diet , Phenylketonurias , Animals , Cattle , Female , Bread , Follow-Up Studies , Longitudinal Studies , Phenylketonurias/drug therapy
10.
Nutrients ; 15(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37447372

ABSTRACT

In phenylketonuria (PKU), a previous intervention study assessing the patients ability to tolerate fruits and vegetables containing phenylalanine 76-100 mg/100 g without limit or measurement, found that an extra 50 mg/day phenylalanine, but not 100 mg/day, was tolerated from these fruits and vegetables. In a further 6-month extension study, we examined the effect of the 'free' use of this group of fruits and vegetables on blood phenylalanine control. For 6 months, the patients ate fruits and vegetables containing phenylalanine 76-100 mg/100 g without limit or measurement. Three-day diet diaries and the patients' weights were collected monthly. Blood phenylalanine spots were collected weekly aiming for blood phenylalanine levels <360 µmol/L. Retrospective blood phenylalanine was collected 6 months pre-trial. All 16 patients (69% females) from the intervention study took part in the extension study. Most of the patients (n = 14/16) had classical PKU with a median age of 10.5 years (range: 6-13). There was no statistically significant difference in the median blood phenylalanine pre-study (270, range: 50-760 µmol/L) compared to the 6-month extension study (250, range: 20-750 µmol/L) (p= 0.4867). The patients had a median of 21 and 22 bloodspots, pre- and post-trial, respectively. In the extension study, the patients had an actual mean intake of 11 g/day (4-37) natural protein and 65 g/day (60-80) protein equivalent from a protein substitute. The mean phenylalanine intake was 563 mg/day (200-1850) with only 19 mg/day (0-146) phenylalanine from fruits and vegetables containing phenylalanine 76-100 mg/100 g. The weight z-scores remained unchanged (1.52 vs. 1.60, p = 0.4715). There was no adverse impact on blood phenylalanine control when fruits and vegetables containing phenylalanine 76-100 mg/100 g were eaten without limit or measurement. However, the fruits and vegetable portion sizes eaten were small (60 g/week). Further longitudinal work is necessary to examine the 'free' use of fruits and vegetables containing phenylalanine 76-100 mg/100 g on metabolic control in patients with PKU.


Subject(s)
Phenylketonurias , Vegetables , Female , Humans , Child , Adolescent , Male , Fruit , Phenylalanine , Retrospective Studies , Follow-Up Studies , Preliminary Data
11.
Nutrients ; 15(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242212

ABSTRACT

BACKGROUND: A diagnosis of phenylketonuria (PKU) in an infant is a devastating and overwhelming event for their parents. Providing appropriate information and support is paramount, especially at the beginning of a child's life. Investigating if parents are receiving the right support is important for continued care. METHODOLOGY: An online survey was distributed to explore parents' perceptions of current support and information provided by their healthcare provider and to rate sources of other support (n = 169 participants). RESULTS: Dietitians received the highest (85%) rate of "very helpful" support. Overall, parents found Facebook to be helpful for support but had mixed reactions when asked if healthcare professionals (HCPs) should provide advice as part of the groups. When rating the most effective learning methods, the top three were 1:1 teaching sessions (n = 109, 70%), picture books (n = 73, 50%), and written handouts (n = 70, 46%). CONCLUSION: Most parents are happy with the support and information they receive from their dietitian but required more support from other HCPs. Facebook groups provide parents with the social support that HCPs and their family may be unable to offer, suggesting a place for social media in future PKU care.


Subject(s)
Nutritionists , Phenylketonurias , Child , Humans , Infant , Parents , Health Personnel , Perception
12.
Orphanet J Rare Dis ; 18(1): 16, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36698214

ABSTRACT

BACKGROUND: Phenylalanine-free infant formula is an essential source of safe protein in a phenylalanine restricted diet, but its efficacy is rarely studied. We report a multicentre, open, longitudinal, prospective intervention study on a phenylalanine-free infant formula (PKU Start: Vitaflo International Ltd.). RESULTS: This was a 2-part study: part I (28 days short term evaluation) and part II (12 months extension). Data was collected on infant blood phenylalanine concentrations, dietary intake, growth, and gastrointestinal tolerance. Ten infants (n = 8 males, 80%), with a median age of 14 weeks (range 4-36 weeks) were recruited from 3 treatment centres in the UK. Nine of ten infants completed the 28-day follow-up (one caregiver preferred the usual phenylalanine-free formula and discontinued the study formula after day 14) and 7/9 participated in study part II. The phenylalanine-free infant formula contributed a median of 57% (IQR 50-62%) energy and 53% (IQR 33-66%) of total protein intake from baseline to the end of the part II extension study. During the 12-month follow-up, infants maintained normal growth and satisfactory blood phenylalanine control. Any early gastrointestinal symptoms (constipation, colic, vomiting and poor feeding) improved with time. CONCLUSION: The study formula was well tolerated, helped maintain good metabolic control, and normal growth in infants with PKU. The long-term efficacy of phenylalanine-free infant formula should continue to be observed and monitored.


Subject(s)
Infant Formula , Phenylketonurias , Infant , Male , Humans , Prospective Studies , Phenylalanine , Proteins
13.
Pain ; 164(5): 967-976, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36448970

ABSTRACT

ABSTRACT: The increasing demand for pain management and limited resources available highlight the need to measure treatment effectiveness. We analysed data collected at 75 specialist persistent pain services located in Australia and New Zealand to calculate the overall treatment outcome for patients receiving care during 2014 to 2020. Sociodemographic and clinical information was provided for 23,915 patients, along with patient-reported measures assessing pain, pain interference, depression, anxiety, stress, pain catastrophizing, and pain self-efficacy. Latent class analysis identified 4 distinct outcomes based on patients' pattern of responses across the assessment tools at treatment end. Group 1 (n = 8369, 35%) reported low/mild severity across all clinical domains at the end of care, while group 4 (n= 7081, 30%) were more likely to report moderate/high severity on all domains. Group 2 (n = 1991, 8%) reported low/mild pain with moderate/high psychological distress at treatment end, and group 3 (n = 6474, 27%) reported moderate/high pain with low/mild psychological distress. Multivariable logistic regression identified those factors associated with the different groups. In particular, factors most predictive of a poor (group 4) vs good outcome (group 1) were unemployment (due to pain or other reasons), requiring an interpreter, widespread pain, pain of longer duration, and attributing the pain to an injury at work. The results may allow identification of those most likely to benefit from the services currently provided and inform development of alternative or enhanced services for those at risk of a poor outcome.


Subject(s)
Pain Management , Pain , Humans , Latent Class Analysis , Pain/psychology , Australasia/epidemiology , Electronics
14.
Nutrients ; 14(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36558364

ABSTRACT

In the UK, different dietary systems are used to calculate protein or tyrosine/phenylalanine intake in the dietary management of hereditary tyrosinaemia, HTI, II and III (HT), with no systematic evidence comparing the merits and inadequacies of each. This study aimed to examine the current UK dietary practices in all HTs and, using Delphi methodology, to reach consensus agreement about the best dietary management system. Over 12 months, five meetings were held with UK paediatric and adult dietitians working in inherited metabolic disorders (IMDs) managing HTs. Eleven statements on the dietary system for calculating protein or tyrosine/phenylalanine intake were discussed. Dietitians from 12 of 14 IMD centres caring for HT patients participated, and 7/11 statements were agreed with one Delphi round. Nine centres (three abstentions) supported a 1 g protein exchange system for all foods except fruit and vegetables. The same definitions used in the UK for phenylketonuria (PKU) were adopted to define when to calculate foods as part of a protein exchange system or permit them without measurement. Fruit and vegetables contain a lower amount of tyrosine/phenylalanine per 1 g of protein than animal and cereal foods. The correlation of tyrosine vs. phenylalanine (mg/100 g) for vegetables and fruits was high (r = 0.9). In Delphi round 2, agreement was reached to use the tyrosine/phenylalanine analyses of fruits/vegetables, for their allocation within the HT diet. This allowed larger portion sizes of measured fruits and vegetables and increased the variety of fruit and vegetables that could be eaten without measurement. In HTs, a combined dietary management system will be used: 1 g protein exchanges for cereal and milk protein sources and tyrosine/phenylalanine exchanges for fruit and vegetables. Intensive, systematic communication with IMD dietitians and reappraisal of the evidence has redefined and harmonised HT dietary practice across the UK.


Subject(s)
Tyrosinemias , Diet , Vegetables , Fruit , Phenylalanine , United Kingdom
15.
Nutrients ; 14(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36501017

ABSTRACT

Introduction: There is little practical guidance about suitable food choices for higher natural protein tolerances in patients with phenylketonuria (PKU). This is particularly important to consider with the introduction of adjunct pharmaceutical treatments that may improve protein tolerance. Aim: To develop a set of guidelines for the introduction of higher protein foods into the diets of patients with PKU who tolerate >10 g/day of protein. Methods: In January 2022, a 26-item food group questionnaire, listing a range of foods containing protein from 5 to >20 g/100 g, was sent to all British Inherited Metabolic Disease Group (BIMDG) dietitians (n = 80; 26 Inherited Metabolic Disease [IMD] centres). They were asked to consider within their IMD dietetic team when they would recommend introducing each of the 26 protein-containing food groups into a patient's diet who tolerated >10 g to 60 g/day of protein. The patient protein tolerance for each food group that received the majority vote from IMD dietetic teams was chosen as its tolerance threshold for introduction. A virtual meeting was held using Delphi methodology in March 2022 to discuss and agree final consensus. Results: Responses were received from dietitians from 22/26 IMD centres (85%) (11 paediatric, 11 adult). For patients tolerating protein ≥15 g/day, the following foods were agreed for inclusion: gluten-free pastas, gluten-free flours, regular bread, cheese spreads, soft cheese, and lentils in brine; for protein tolerance ≥20 g/day: nuts, hard cheeses, regular flours, meat/fish, and plant-based alternative products (containing 5−10 g/100 g protein), regular pasta, seeds, eggs, dried legumes, and yeast extract spreads were added; for protein tolerance ≥30 g/day: meat/fish and plant-based alternative products (containing >10−20 g/100 g protein) were added; and for protein tolerance ≥40 g/day: meat/fish and plant-based alternatives (containing >20 g/100 g protein) were added. Conclusion: This UK consensus by IMD dietitians from 22 UK centres describes for the first time the suitability and allocation of higher protein foods according to individual patient protein tolerance. It provides valuable guidance for health professionals to enable them to standardize practice and give rational advice to patients.


Subject(s)
Phenylketonurias , Animals , Consensus , Diet , Meat , United Kingdom
16.
Nutrients ; 14(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36296952

ABSTRACT

Fruits and vegetables containing phenylalanine ≤ 75 mg/100 g (except potatoes) have little impact on blood phenylalanine in phenylketonuria (PKU). In a randomized, controlled, crossover intervention trial, we examined the effect of increasing phenylalanine intake from fruits and vegetables, containing phenylalanine 76−100 mg /100 g, compared with milk protein sources on blood phenylalanine control. This was a five-phase study (4 weeks each phase). In Phase A, patients remained on their usual diet and then were randomly allocated to start Phase B and C (an additional phenylalanine intake of 50 mg/day, then 100 mg from fruits and vegetables containing phenylalanine 76−100 mg/100 g) or Phase D and E (an additional phenylalanine intake of 50 mg/day then 100 mg/day from milk sources). There was a 7-day washout with the usual phenylalanine-restricted diet between Phase B/C and D/E. Blood phenylalanine was measured on the last 3 days of each week. If four out of six consecutive blood phenylalanine levels were >360 µmol/L in one arm, this intervention was stopped. Sixteen patients (median age 10.5 y; range 6−12 y) were recruited. At baseline, a median of 6 g/day (range: 3−25) natural protein and 60 g/day (range: 60−80) protein equivalent from protein substitute were prescribed. Median phenylalanine levels were: Phase A­240 µmol/L; Phase B­260 µmol/L; Phase C­280 µmol/L; Phase D­270 µmol/L and Phase E­280 µmol/L. All patients tolerated an extra 50 mg/day of phenylalanine from fruit and vegetables, containing phenylalanine 76−100 mg/100 g, but only 11/16 (69%) tolerated an additional 100 mg /day. With milk protein, only 8/16 (50%) tolerated an extra 50 mg/day and only 5/16 (31%) tolerated an additional 100 mg/day of phenylalanine. Tolerance was defined as maintaining consistent blood phenylalanine levels < 360 µmol/L throughout each study arm. There was a trend that vegetable protein had less impact on blood phenylalanine control than milk protein, but overall, the differences were not statistically significant (p = 0.152). This evidence supports the PKU European Guidelines cutoff that fruit and vegetables containing 76−100 mg phenylalanine/100 g should be calculated as part of the phenylalanine exchange system. Tolerance of the 'free use' of these fruits and vegetables depends on inter-patient variability but cannot be recommended for all patients with PKU.


Subject(s)
Fruit , Phenylketonurias , Child , Humans , Plant Proteins, Dietary , Milk Proteins , Vegetables , Phenylalanine
17.
Orphanet J Rare Dis ; 17(1): 395, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36303225

ABSTRACT

BACKGROUND: In children with phenylketonuria (PKU), transitioning protein substitutes at the appropriate developmental age is essential to help with their long-term acceptance and ease of administration. We assessed the parental experiences in transitioning from a second stage to third stage liquid or powdered protein substitute in patients with PKU. RESULTS: Sixteen interviews (23 open-ended questions) were carried out with parents/caregivers of children with PKU (8 females, 50%) with a median age of 8 years (range 5-11 years), continuously treated with diet, and on a third stage protein substitute. Parents/caregivers identified common facilitators and barriers during the third stage protein substitute transition process. The main facilitators were: child and parent motivation, parent knowledge of the transition process, a role model with PKU, low volume and easy preparation of the third stage protein substitute (liquid/powder), anticipation of increasing child independence, lower parent workload, attractive packaging, better taste and smell, school and teacher support, dietetic plans and guidance, PKU social events, child educational materials and written resources. The main barriers were child aversion to new protein substitutes, poor child behaviour, child aged > 5 years, parental fear of change, the necessity for  parental time and persistence, loss of parental control, high product volume, different taste, smell, and texture of new protein substitutes, and peer bullying. CONCLUSION: A stepwise, supportive approach is necessary when transitioning from second to third stage protein substitutes in PKU. Future studies are needed to develop guidance to assist parents/caregivers, health professionals, and teachers during the transition process.


Subject(s)
Phenylketonurias , Child , Female , Humans , Child, Preschool , Proteins , Parents , Caregivers
18.
Mol Genet Metab ; 137(3): 308-322, 2022 11.
Article in English | MEDLINE | ID: mdl-36274442

ABSTRACT

Propionic acidemia (PA) is an inherited metabolic disorder of propionate metabolism, where the gut microbiota may play a role in pathophysiology and therefore, represent a relevant therapeutic target. Little is known about the gut microbiota composition and activity in patients with PA. Although clinical practice varies between metabolic treatment centers, management of PA requires combined dietary and pharmaceutical treatments, both known to affect the gut microbiota. This study aimed to characterize the gut microbiota and its metabolites in fecal samples of patients with PA compared with healthy controls from the same household. Eight patients (aged 3-14y) and 8 controls (4-31y) were recruited from Center 1 (UK) and 7 patients (11-33y) and 6 controls (15-54y) from Center 2 (Austria). Stool samples were collected 4 times over 3 months, alongside data on dietary intakes and medication usage. Several microbial taxa differed between patients with PA and controls, particularly for Center 1, e.g., Proteobacteria levels were increased, whereas butyrate-producing genera, such as Roseburia and Faecalibacterium, were decreased. Most measured microbial metabolites were lower in patients with PA, and butyrate was particularly depleted in patients from Center 1. Furthermore, microbiota profile of these patients showed the lowest compositional and functional diversity, and lowest stability over 3 months. As the first study to map the gut microbiota of patients with PA, this work represents an important step forward for developing new therapeutic strategies to further improve PA clinical status. New dietary strategies should consider microbial propionate production as well as butyrate production and microbiota stability.


Subject(s)
Gastrointestinal Microbiome , Propionic Acidemia , Humans , Propionates , Feces/microbiology , Butyrates
19.
Mol Genet Metab Rep ; 32: 100904, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36046398

ABSTRACT

Background: Glycogen storage diseases type IIIa and b (GSDIII) are rare inherited metabolic disorders that are caused by deficiencies of the glycogen debranching enzyme, resulting in the accumulation of abnormal glycogen ('limit dextrin') in the muscles. The cardiac storage of limit dextrin causes a form of cardiomyopathy similar to primary hypertrophic cardiomyopathy. Treatment with a high fat diet is controversial but we report a positive outcome in a child with cardiomyopathy. Case presentation: A 9-year-old boy with GSDIIIa developed left ventricular hypertrophy at 4.3 years of age. A high-fat (50%), high protein (20%), low-carbohydrates (30%) diet was introduced. After 18 months, echocardiogram, biochemical and clinical parameters improved (Creatine Kinase (CK), 1628➔1125 U/L; left ventricular outflow tract (LVOT), 35➔20 mmHg; interventricular septum (IVS), 21➔10 mm). The diet was abandoned for 2 years resulting in reversal of symptoms, but recommencement showed improvement after 6 months. Conclusion: A high fat, high protein and low carbohydrate diet was successful in reversing cardiomyopathy. This form of treatment should be considered in children with GSD IIIa with cardiomyopathy.

20.
J Inherit Metab Dis ; 45(5): 952-962, 2022 09.
Article in English | MEDLINE | ID: mdl-35722880

ABSTRACT

Tyrosinemia type 1 (TT1) and phenylketonuria (PKU) are both inborn errors of phenylalanine-tyrosine metabolism. Neurocognitive and behavioral outcomes have always featured in PKU research but received less attention in TT1 research. This study aimed to investigate and compare neurocognitive, behavioral, and social outcomes of treated TT1 and PKU patients. We included 33 TT1 patients (mean age 11.24 years; 16 male), 31 PKU patients (mean age 10.84; 14 male), and 58 age- and gender-matched healthy controls (mean age 10.82 years; 29 male). IQ (Wechsler-subtests), executive functioning (the Behavioral Rating Inventory of Executive Functioning), mental health (the Achenbach-scales), and social functioning (the Social Skills Rating System) were assessed. Results of TT1 patients, PKU patients, and healthy controls were compared using Kruskal-Wallis tests with post-hoc Mann-Whitney U tests. TT1 patients showed a lower IQ and poorer executive functioning, mental health, and social functioning compared to healthy controls and PKU patients. PKU patients did not differ from healthy controls regarding these outcome measures. Relatively poor outcomes for TT1 patients were particularly evident for verbal IQ, BRIEF dimensions "working memory", "plan and organize" and "monitor", ASEBA dimensions "social problems" and "attention problems", and for the SSRS "assertiveness" scale (all p values <0.001). To conclude, TT1 patients showed cognitive impairments on all domains studied, and appeared to be significantly more affected than PKU patients. More attention should be paid to investigating and monitoring neurocognitive outcome in TT1 and research should focus on explaining the underlying pathophysiological mechanism.


Subject(s)
Phenylketonurias , Tyrosinemias , Child , Humans , Male , Mental Health , Metabolic Networks and Pathways , Neuropsychological Tests , Tyrosinemias/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...