Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 552
Filter
1.
bioRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39091879

ABSTRACT

Circadian rhythms not only coordinate the timing of wake and sleep but also regulate homeostasis within the body, including glucose metabolism. However, the genetic variants that contribute to temporal control of glucose levels have not been previously examined. Using data from 420,000 individuals from the UK Biobank and replicating our findings in 100,000 individuals from the Estonian Biobank, we show that diurnal serum glucose is under genetic control. We discover a robust temporal association of glucose levels at the Melatonin receptor 1B (MTNR1B) (rs10830963, P = 1e-22) and a canonical circadian pacemaker gene Cryptochrome 2 (CRY2) loci (rs12419690, P = 1e-16). Furthermore, we show that sleep modulates serum glucose levels and the genetic variants have a separate mechanism of diurnal control. Finally, we show that these variants independently modulate risk of type 2 diabetes. Our findings, together with earlier genetic and epidemiological evidence, show a clear connection between sleep and metabolism and highlight variation at MTNR1B and CRY2 as temporal regulators for glucose levels.

2.
Nat Med ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117878

ABSTRACT

Circulating plasma proteins play key roles in human health and can potentially be used to measure biological age, allowing risk prediction for age-related diseases, multimorbidity and mortality. Here we developed a proteomic age clock in the UK Biobank (n = 45,441) using a proteomic platform comprising 2,897 plasma proteins and explored its utility to predict major disease morbidity and mortality in diverse populations. We identified 204 proteins that accurately predict chronological age (Pearson r = 0.94) and found that proteomic aging was associated with the incidence of 18 major chronic diseases (including diseases of the heart, liver, kidney and lung, diabetes, neurodegeneration and cancer), as well as with multimorbidity and all-cause mortality risk. Proteomic aging was also associated with age-related measures of biological, physical and cognitive function, including telomere length, frailty index and reaction time. Proteins contributing most substantially to the proteomic age clock are involved in numerous biological functions, including extracellular matrix interactions, immune response and inflammation, hormone regulation and reproduction, neuronal structure and function and development and differentiation. In a validation study involving biobanks in China (n = 3,977) and Finland (n = 1,990), the proteomic age clock showed similar age prediction accuracy (Pearson r = 0.92 and r = 0.94, respectively) compared to its performance in the UK Biobank. Our results demonstrate that proteomic aging involves proteins spanning multiple functional categories and can be used to predict age-related functional status, multimorbidity and mortality risk across geographically and genetically diverse populations.

4.
Cell Genom ; : 100630, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39142284

ABSTRACT

Raynaud's syndrome is a dysautonomia where exposure to cold causes vasoconstriction and hypoxia, particularly in the extremities. We performed meta-analysis in four cohorts and discovered eight loci (ADRA2A, IRX1, NOS3, ACVR2A, TMEM51, PCDH10-DT, HLA, and RAB6C) where ADRA2A, ACVR2A, NOS3, TMEM51, and IRX1 co-localized with expression quantitative trait loci (eQTLs), particularly in distal arteries. CRISPR gene editing further showed that ADRA2A and NOS3 loci modified gene expression and in situ RNAscope clarified the specificity of ADRA2A in small vessels and IRX1 around small capillaries in the skin. A functional contraction assay in the cold showed lower contraction in ADRA2A-deficient and higher contraction in ADRA2A-overexpressing smooth muscle cells. Overall, our study highlights the power of genome-wide association testing with functional follow-up as a method to understand complex diseases. The results indicate temperature-dependent adrenergic signaling through ADRA2A, effects at the microvasculature by IRX1, endothelial signaling by NOS3, and immune mechanisms by the HLA locus in Raynaud's syndrome.

5.
Nat Commun ; 15(1): 6212, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043636

ABSTRACT

The population of Russia consists of more than 150 local ethnicities. The ethnic diversity and geographic origins, which extend from eastern Europe to Asia, make the population uniquely positioned to investigate the shared properties of inherited disease risks between European and Asian ancestries. We present the analysis of genetic and phenotypic data from a cohort of 4,145 individuals collected in three metro areas in western Russia. We show the presence of multiple admixed genetic ancestry clusters spanning from primarily European to Asian and high identity-by-descent sharing with the Finnish population. As a result, there was notable enrichment of Finnish-specific variants in Russia. We illustrate the utility of Russian-descent cohorts for discovery of novel population-specific genetic associations, as well as replication of previously identified associations that were thought to be population-specific in other cohorts. Finally, we provide access to a database of allele frequencies and GWAS results for 464 phenotypes.


Subject(s)
Gene Frequency , Genome-Wide Association Study , Humans , Russia/epidemiology , Male , Polymorphism, Single Nucleotide , Female , Genetic Predisposition to Disease , Genetics, Population , Phenotype , White People/genetics , Finland , Asian People/genetics , Genetic Variation , Cohort Studies , Multifactorial Inheritance/genetics , Ethnicity/genetics , Eastern European People
6.
Res Sq ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39041034

ABSTRACT

The high prevalence of autoimmune hypothyroidism (AIHT) - more than 5% in human populations - provides a unique opportunity to unlock the most complete picture to date of genetic loci that underlie systemic and organ-specific autoimmunity. Using a meta-analysis of 81,718 AIHT cases in FinnGen and the UK Biobank, we dissect associations along axes of thyroid dysfunction and autoimmunity. This largest-to-date scan of hypothyroidism identifies 418 independent associations (p < 5×10- 8), more than half of which have not previously been documented in thyroid disease. In 48 of these, a protein-coding variant is the lead SNP or is highly correlated (r2 > 0.95) with the lead SNP at the locus, including low-frequency coding variants at LAG3, ZAP70, TG, TNFSF11, IRF3, S1PR4, HABP2, ZNF429 as well as established variants at ADCY7, IFIH1 and TYK2. The variants at LAG3 (P67T), ZAP70 (T155M), and TG (Q655X) are highly enriched in Finland and functional experiments in T-cells demonstrate that the ZAP70:T155M allele reduces T-cell activation. By employing a large-scale scan of non-thyroid autoimmunity and a published meta-analysis of TSH levels, we use a Bayesian classifier to dissect the associated loci into distinct groupings and from this estimate, a significant proportion are involved in systemic (i.e., general to multiple autoimmune conditions) autoimmunity (34%) and another subset in thyroid-specific dysfunction (17%). By comparing these association results further to other common disease endpoints, we identify a noteworthy overlap with skin cancer, with 10% of AIHT loci showing a consistent but opposite pattern of association where alleles that increase the risk of hypothyroidism have protective effects for skin cancer. The association results, including genes encoding checkpoint inhibitors and other genes affecting protein levels of PD1, bolster the causal role of natural variation in autoimmunity influencing cancer outcomes.

7.
Nat Commun ; 15(1): 6277, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054313

ABSTRACT

A diagnosis of epilepsy has significant consequences for an individual but is often challenging in clinical practice. Novel biomarkers are thus greatly needed. Here, we investigated how common genetic factors (epilepsy polygenic risk scores, [PRSs]) influence epilepsy risk in detailed longitudinal electronic health records (EHRs) of > 700k Finns and Estonians. We found that a high genetic generalized epilepsy PRS (PRSGGE) increased risk for genetic generalized epilepsy (GGE) (hazard ratio [HR] 1.73 per PRSGGE standard deviation [SD]) across lifetime and within 10 years after an unspecified seizure event. The effect of PRSGGE was significantly larger on idiopathic generalized epilepsies, in females and for earlier epilepsy onset. Analogously, we found significant but more modest focal epilepsy PRS burden associated with non-acquired focal epilepsy (NAFE). Here, we outline the potential of epilepsy specific PRSs to serve as biomarkers after a first seizure event.


Subject(s)
Epilepsy, Generalized , Genetic Predisposition to Disease , Multifactorial Inheritance , Seizures , Humans , Female , Male , Adult , Multifactorial Inheritance/genetics , Seizures/genetics , Middle Aged , Risk Factors , Epilepsy, Generalized/genetics , Young Adult , Adolescent , Epilepsy/genetics , Epilepsy/epidemiology , Biomarkers , Epilepsies, Partial/genetics , Child , Aged , Longitudinal Studies , Electronic Health Records , Genetic Risk Score
8.
Nat Genet ; 56(8): 1597-1603, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39039282

ABSTRACT

Bleeding in early pregnancy and postpartum hemorrhage (PPH) bear substantial risks, with the former closely associated with pregnancy loss and the latter being the foremost cause of maternal death, underscoring the severe impact on maternal-fetal health. We identified five genetic loci linked to PPH in a meta-analysis. Functional annotation analysis indicated candidate genes HAND2, TBX3 and RAP2C/FRMD7 at three loci and showed that at each locus, associated variants were located within binding sites for progesterone receptors. There were strong genetic correlations with birth weight, gestational duration and uterine fibroids. Bleeding in early pregnancy yielded no genome-wide association signals but showed strong genetic correlation with various human traits, suggesting a potentially complex, polygenic etiology. Our results suggest that PPH is related to progesterone signaling dysregulation, whereas early bleeding is a complex trait associated with underlying health and possibly socioeconomic status and may include genetic factors that have not yet been identified.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Postpartum Hemorrhage , Humans , Female , Postpartum Hemorrhage/genetics , Pregnancy , Genetic Predisposition to Disease , Genetic Loci , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism
9.
Dev Cell ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38942017

ABSTRACT

Recent advances in human genetics have shed light on the genetic factors contributing to inflammatory diseases, particularly Crohn's disease (CD), a prominent form of inflammatory bowel disease. Certain risk genes associated with CD directly influence cytokine biology and cell-specific communication networks. Current CD therapies primarily rely on anti-inflammatory drugs, which are inconsistently effective and lack strategies for promoting epithelial restoration and mucosal balance. To understand CD's underlying mechanisms, we investigated the link between CD and the FGFR1OP gene, which encodes a centrosome protein. FGFR1OP deletion in mouse intestinal epithelial cells disrupted crypt architecture, resulting in crypt loss, inflammation, and fatality. FGFR1OP insufficiency hindered epithelial resilience during colitis. FGFR1OP was crucial for preserving non-muscle myosin II activity, ensuring the integrity of the actomyosin cytoskeleton and crypt cell adhesion. This role of FGFR1OP suggests that its deficiency in genetically predisposed individuals may reduce epithelial renewal capacity, heightening susceptibility to inflammation and disease.

10.
Nature ; 631(8019): 134-141, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38867047

ABSTRACT

Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.


Subject(s)
Aneuploidy , Chromosomes, Human, X , Clone Cells , Leukocytes , Mosaicism , Adult , Female , Humans , Male , Middle Aged , Alleles , Autoimmune Diseases/genetics , Biological Specimen Banks , Chromosome Segregation/genetics , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Clone Cells/metabolism , Clone Cells/pathology , Exome/genetics , F-Box Proteins/genetics , Genetic Predisposition to Disease/genetics , Germ-Line Mutation , Leukemia/genetics , Leukocytes/metabolism , Models, Genetic , Multifactorial Inheritance/genetics , Mutation, Missense/genetics
11.
Genome Res ; 34(5): 796-809, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38749656

ABSTRACT

Underrepresented populations are often excluded from genomic studies owing in part to a lack of resources supporting their analyses. The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP), which have recently been sequenced to high coverage, are valuable genomic resources because of the global diversity they capture and their open data sharing policies. Here, we harmonized a high-quality set of 4094 whole genomes from 80 populations in the HGDP and 1kGP with data from the Genome Aggregation Database (gnomAD) and identified over 153 million high-quality SNVs, indels, and SVs. We performed a detailed ancestry analysis of this cohort, characterizing population structure and patterns of admixture across populations, analyzing site frequency spectra, and measuring variant counts at global and subcontinental levels. We also show substantial added value from this data set compared with the prior versions of the component resources, typically combined via liftOver and variant intersection; for example, we catalog millions of new genetic variants, mostly rare, compared with previous releases. In addition to unrestricted individual-level public release, we provide detailed tutorials for conducting many of the most common quality-control steps and analyses with these data in a scalable cloud-computing environment and publicly release this new phased joint callset for use as a haplotype resource in phasing and imputation pipelines. This jointly called reference panel will serve as a key resource to support research of diverse ancestry populations.


Subject(s)
Databases, Genetic , Genome, Human , Humans , Human Genome Project , High-Throughput Nucleotide Sequencing/methods , Genetic Variation , Genomics/methods
12.
Am J Hum Genet ; 111(6): 1047-1060, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38776927

ABSTRACT

Lichen planus (LP) is a T-cell-mediated inflammatory disease affecting squamous epithelia in many parts of the body, most often the skin and oral mucosa. Cutaneous LP is usually transient and oral LP (OLP) is most often chronic, so we performed a large-scale genetic and epidemiological study of LP to address whether the oral and non-oral subgroups have shared or distinct underlying pathologies and their overlap with autoimmune disease. Using lifelong records covering diagnoses, procedures, and clinic identity from 473,580 individuals in the FinnGen study, genome-wide association analyses were conducted on carefully constructed subcategories of OLP (n = 3,323) and non-oral LP (n = 4,356) and on the combined group. We identified 15 genome-wide significant associations in FinnGen and an additional 12 when meta-analyzed with UKBB (27 independent associations at 25 distinct genomic locations), most of which are shared between oral and non-oral LP. Many associations coincide with known autoimmune disease loci, consistent with the epidemiologic enrichment of LP with hypothyroidism and other autoimmune diseases. Notably, a third of the FinnGen associations demonstrate significant differences between OLP and non-OLP. We also observed a 13.6-fold risk for tongue cancer and an elevated risk for other oral cancers in OLP, in agreement with earlier reports that connect LP with higher cancer incidence. In addition to a large-scale dissection of LP genetics and comorbidities, our study demonstrates the use of comprehensive, multidimensional health registry data to address outstanding clinical questions and reveal underlying biological mechanisms in common but understudied diseases.


Subject(s)
Autoimmune Diseases , Genome-Wide Association Study , Lichen Planus, Oral , Mouth Neoplasms , Humans , Autoimmune Diseases/genetics , Lichen Planus, Oral/genetics , Lichen Planus, Oral/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Female , Male , Genetic Heterogeneity , Middle Aged , Lichen Planus/genetics , Lichen Planus/pathology , Genetic Predisposition to Disease , Aged , Adult , Risk Factors , Polymorphism, Single Nucleotide
13.
medRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766240

ABSTRACT

Central serous chorioretinopathy (CSC) is a fluid maculopathy whose etiology is not well understood. Abnormal choroidal veins in CSC patients have been shown to have similarities with varicose veins. To identify potential mechanisms, we analyzed genotype data from 1,477 CSC patients and 455,449 controls in FinnGen. We identified an association for a low-frequency (AF=0.5%) missense variant (rs113791087) in the gene encoding vascular endothelial protein tyrosine phosphatase (VE-PTP) (OR=2.85, P=4.5×10-9). This was confirmed in a meta-analysis of 2,452 CSC patients and 865,767 controls from 4 studies (OR=3.06, P=7.4×10-15). Rs113791087 was associated with a 56% higher prevalence of retinal abnormalities (35.3% vs 22.6%, P=8.0×10-4) in 708 UK Biobank participants and, surprisingly, with varicose veins (OR=1.31, P=2.3×10-11) and glaucoma (OR=0.82, P=6.9×10-9). Predicted loss-of-function variants in VEPTP, though rare in number, were associated with CSC in All of Us (OR=17.10, P=0.018). These findings highlight the significance of VE-PTP in diverse ocular and systemic vascular diseases.

14.
medRxiv ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38798318

ABSTRACT

Understanding the genetic basis of gene expression can help us understand the molecular underpinnings of human traits and disease. Expression quantitative trait locus (eQTL) mapping can help in studying this relationship but have been shown to be very cell-type specific, motivating the use of single-cell RNA sequencing and single-cell eQTLs to obtain a more granular view of genetic regulation. Current methods for single-cell eQTL mapping either rely on the "pseudobulk" approach and traditional pipelines for bulk transcriptomics or do not scale well to large datasets. Here, we propose SAIGE-QTL, a robust and scalable tool that can directly map eQTLs using single-cell profiles without needing aggregation at the pseudobulk level. Additionally, SAIGE-QTL allows for testing the effects of less frequent/rare genetic variation through set-based tests, which is traditionally excluded from eQTL mapping studies. We evaluate the performance of SAIGE-QTL on both real and simulated data and demonstrate the improved power for eQTL mapping over existing pipelines.

15.
bioRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38645134

ABSTRACT

Missense variants can have a range of functional impacts depending on factors such as the specific amino acid substitution and location within the gene. To interpret their deleteriousness, studies have sought to identify regions within genes that are specifically intolerant of missense variation 1-12 . Here, we leverage the patterns of rare missense variation in 125,748 individuals in the Genome Aggregation Database (gnomAD) 13 against a null mutational model to identify transcripts that display regional differences in missense constraint. Missense-depleted regions are enriched for ClinVar 14 pathogenic variants, de novo missense variants from individuals with neurodevelopmental disorders (NDDs) 15,16 , and complex trait heritability. Following ClinGen calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less than 20% of their expected missense variation achieve moderate support for pathogenicity. We create a missense deleteriousness metric (MPC) that incorporates regional constraint and outperforms other deleteriousness scores at stratifying case and control de novo missense variation, with a strong enrichment in NDDs. These results provide additional tools to aid in missense variant interpretation.

16.
Res Sq ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38645143

ABSTRACT

Preeclampsia is a common multifactorial disease of pregnancy. Dysregulation of the complement activation is among emerging candidates responsible for disease pathogenesis. In a targeted exomic sequencing study we identified 14 variants within nine genes coding for components of the membrane attack complex (MAC, C5b-9) that are associated with preeclampsia. We found two rare missense variants in the C5 gene that predispose to preeclampsia (rs200674959: I1296V, OR (CI95) = 24.13 (1.25-467.43), p-value = 0.01 and rs147430470: I330T, OR (CI95) = 22.75 (1.17-440.78), p-value = 0.01). In addition, one predisposing rare variant and one protective rare variant were discovered in C6 (rs41271067: D396G, OR (CI95) = 2.93 (1.18-7.10), p-value = 0.01 and rs114609505: T190I, 0.02 OR (CI95) = 0.47 (0.22-0.92), p-value = 0.02). The results suggest that variants in terminal complement pathway predispose to preeclampsia.

17.
Nat Commun ; 15(1): 2041, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503741

ABSTRACT

Lyme disease is a tick-borne disease caused by bacteria of the genus Borrelia. The host factors that modulate susceptibility for Lyme disease have remained mostly unknown. Using epidemiological and genetic data from FinnGen and Estonian Biobank, we identify two previously known variants and an unknown common missense variant at the gene encoding for Secretoglobin family 1D member 2 (SCGB1D2) protein that increases the susceptibility for Lyme disease. Using live Borrelia burgdorferi (Bb) we find that recombinant reference SCGB1D2 protein inhibits the growth of Bb in vitro more efficiently than the recombinant protein with SCGB1D2 P53L deleterious missense variant. Finally, using an in vivo murine infection model we show that recombinant SCGB1D2 prevents infection by Borrelia in vivo. Together, these data suggest that SCGB1D2 is a host defense factor present in the skin, sweat, and other secretions which protects against Bb infection and opens an exciting therapeutic avenue for Lyme disease.


Subject(s)
Borrelia burgdorferi , Ixodes , Lyme Disease , Secretoglobins , Animals , Humans , Mice , Borrelia burgdorferi/genetics , Ixodes/microbiology , Lyme Disease/microbiology
18.
Blood ; 143(23): 2425-2432, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38498041

ABSTRACT

ABSTRACT: The factor V Leiden (FVL; rs6025) and prothrombin G20210A (PTGM; rs1799963) polymorphisms are 2 of the most well-studied genetic risk factors for venous thromboembolism (VTE). However, double heterozygosity (DH) for FVL and PTGM remains poorly understood, with previous studies showing marked disagreement regarding thrombosis risk conferred by the DH genotype. Using multidimensional data from the UK Biobank (UKB) and FinnGen biorepositories, we evaluated the clinical impact of DH carrier status across 937 939 individuals. We found that 662 participants (0.07%) were DH carriers. After adjustment for age, sex, and ancestry, DH individuals experienced a markedly elevated risk of VTE compared with wild-type individuals (odds ratio [OR] = 5.24; 95% confidence interval [CI], 4.01-6.84; P = 4.8 × 10-34), which approximated the risk conferred by FVL homozygosity. A secondary analysis restricted to UKB participants (N = 445 144) found that effect size estimates for the DH genotype remained largely unchanged (OR = 4.53; 95% CI, 3.42-5.90; P < 1 × 10-16) after adjustment for commonly cited VTE risk factors, such as body mass index, blood type, and markers of inflammation. In contrast, the DH genotype was not associated with a significantly higher risk of any arterial thrombosis phenotype, including stroke, myocardial infarction, and peripheral artery disease. In summary, we leveraged population-scale genomic data sets to conduct, to our knowledge, the largest study to date on the DH genotype and were able to establish far more precise effect size estimates than previously possible. Our findings indicate that the DH genotype may occur as frequently as FVL homozygosity and may confer a similarly increased risk of VTE.


Subject(s)
Biological Specimen Banks , Factor V , Heterozygote , Prothrombin , Humans , Prothrombin/genetics , Factor V/genetics , Female , Male , Middle Aged , United Kingdom/epidemiology , Aged , Risk Factors , Venous Thromboembolism/genetics , Venous Thromboembolism/epidemiology , Adult , Thrombosis/genetics , Thrombosis/epidemiology , Thrombosis/etiology , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , UK Biobank
19.
Eur J Hum Genet ; 32(5): 576-583, 2024 May.
Article in English | MEDLINE | ID: mdl-38467730

ABSTRACT

Intellectual disability (ID) is a common disorder, yet there is a wide spectrum of impairment from mild to profoundly affected individuals. Mild ID is seen as the low extreme of the general distribution of intelligence, while severe ID is often seen as a monogenic disorder caused by rare, pathogenic, highly penetrant variants. To investigate the genetic factors influencing mild and severe ID, we evaluated rare and common variation in the Northern Finland Intellectual Disability cohort (n = 1096 ID patients), a cohort with a high percentage of mild ID (n = 550) and from a population bottleneck enriched in rare, damaging variation. Despite this enrichment, we found only a small percentage of ID was due to recessive Finnish-enriched variants (0.5%). A larger proportion was linked to dominant variation, with a significant burden of rare, damaging variation in both mild and severe ID. This rare variant burden was enriched in more severe ID (p = 2.4e-4), patients without a relative with ID (p = 4.76e-4), and in those with features associated with monogenic disorders. We also found a significant burden of common variants associated with decreased cognitive function, with no difference between mild and more severe ID. When we included common and rare variants in a joint model, the rare and common variants had additive effects in both mild and severe ID. A multimodel inference approach also found that common and rare variants together best explained ID status (ΔAIC = 16.8, ΔBIC = 10.2). Overall, we report evidence for the additivity of rare and common variant burden throughout the spectrum of intellectual disability.


Subject(s)
Intellectual Disability , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Female , Finland , Adult , Genetic Variation
20.
Mol Psychiatry ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38556557

ABSTRACT

Genetic factors contribute to the susceptibility of psychotic disorders, but less is known how they affect psychotic disease-course development. Utilizing polygenic scores (PGSs) in combination with longitudinal healthcare data with decades of follow-up we investigated the contributing genetics to psychotic disease-course severity and diagnostic shifts in the SUPER-Finland study, encompassing 10 403 genotyped individuals with a psychotic disorder. To longitudinally track the study participants' past disease-course severity, we created a psychiatric hospitalization burden metric using the full-coverage and nation-wide Finnish in-hospital registry (data from 1969 and onwards). Using a hierarchical model, ranking the psychotic diagnoses according to clinical severity, we show that high schizophrenia PGS (SZ-PGS) was associated with progression from lower ranked psychotic disorders to schizophrenia (OR = 1.32 [1.23-1.43], p = 1.26e-12). This development manifested already at psychotic illness onset as a higher psychiatric hospitalization burden, the proxy for disease-course severity. In schizophrenia (n = 5 479), both a high SZ-PGS and a low educational attainment PGS (EA-PGS) were associated with increased psychiatric hospitalization burden (p = 1.00e-04 and p = 4.53e-10). The SZ-PGS and the EA-PGS associated with distinct patterns of hospital usage. In individuals with high SZ-PGS, the increased hospitalization burden was composed of longer individual hospital stays, while low EA-PGS associated with shorter but more frequent hospital visits. The negative effect of a low EA-PGS was found to be partly mediated via substance use disorder, a major risk factor for hospitalizations. In conclusion, we show that high SZ-PGS and low EA-PGS both impacted psychotic disease-course development negatively but resulted in different disease-course trajectories.

SELECTION OF CITATIONS
SEARCH DETAIL