Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 10: 825981, 2022.
Article in English | MEDLINE | ID: mdl-35242749

ABSTRACT

The engineering of xylo-oligosaccharide-consuming Saccharomyces cerevisiae strains is a promising approach for more effective utilization of lignocellulosic biomass and the development of economic industrial fermentation processes. Extending the sugar consumption range without catabolite repression by including the metabolism of oligomers instead of only monomers would significantly improve second-generation ethanol production This review focuses on different aspects of the action mechanisms of xylan-degrading enzymes from bacteria and fungi, and their insertion in S. cerevisiae strains to obtain microbial cell factories able of consume these complex sugars and convert them to ethanol. Emphasis is given to different strategies for ethanol production from both extracellular and intracellular xylo-oligosaccharide utilization by S. cerevisiae strains. The suitability of S. cerevisiae for ethanol production combined with its genetic tractability indicates that it can play an important role in xylan bioconversion through the heterologous expression of xylanases from other microorganisms.

3.
Biotechnol Rep (Amst) ; 31: e00652, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34258241

ABSTRACT

Trichoderma reesei is one of the major producers of holocellulases. It is known that in T. reesei, protein production patterns can change in a carbon source-dependent manner. Here, we performed a phosphorylome analysis of T. reesei grown in the presence of sugarcane bagasse and glucose as carbon source. In presence of sugarcane bagasse, a total of 114 phosphorylated proteins were identified. Phosphoserine and phosphothreonine corresponded to 89.6% of the phosphosites and 10.4% were related to phosphotyrosine. Among the identified proteins, 65% were singly phosphorylated, 19% were doubly phosphorylated, 12% were triply phosphorylated, and 4% displayed even higher phosphorylation. Seventy-five kinases were predicted to phosphorylate the sites identified in this work, and the most frequently predicted serine/threonine kinase was PKC1. Among phosphorylated proteins, four glycosyl hydrolases were predicted to be secreted. Interestingly, Cel7A activity, the most secreted protein, was reduced to approximately 60% after in vitro dephosphorylation, suggesting that phosphorylation might alter Cel7A structure, substrate affinity, and targeting of the substrate to its carbohydrate-binding domain. These results suggest a novel post-translational regulation of Cel7A.

4.
PLoS One ; 14(2): e0212629, 2019.
Article in English | MEDLINE | ID: mdl-30802241

ABSTRACT

Ferulic acid (FA), a low-molecular weight aromatic compound derived from lignin, represents a high-value molecule, used for applications in the cosmetic and pharmaceutical industries. FA can be further enzymatically converted in other commercially interesting molecules, such as vanillin and bioplastics. In several organisms, these transformations often start with a common step of FA activation via CoA-thioesterification, catalyzed by feruloyl-CoA synthetases (Fcs). In this context, these enzymes are of biotechnological interest for conversion of lignin-derived FA into high value chemicals. In this study, we describe the first structural characterization of a prokaryotic Fcs, named FCS1, isolated from a lignin-degrading microbial consortium. The FCS1 optimum pH and temperature were 9 and 37°C, respectively, with Km of 0.12 mM and Vmax of 36.82 U/mg. The circular dichroism spectra indicated a notable secondary structure stability at alkaline pH values and high temperatures. This secondary structure stability corroborates the activity data, which remains high until pH 9. The Small Angle X-Ray Scattering analyses resulted on the tertiary/quaternary structure and the low-resolution envelope in solution of FCS1, which was modeled as a homodimer using the hyperthermophilic nucleoside diphosphate-forming acetyl-CoA synthetase from Candidatus Korachaeum cryptofilum. This study contributes to the field of research by establishing the first biophysical and structural characterization for Fcs, and our data may be used for comparison against novel enzymes of this class that to be studied in the future.


Subject(s)
Archaea , Archaeal Proteins , Coenzyme A Ligases , Lignin/chemistry , Metagenome , Soil Microbiology , Archaea/enzymology , Archaea/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Benzaldehydes/chemistry , Benzaldehydes/metabolism , Coenzyme A Ligases/chemistry , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Coumaric Acids/chemistry , Coumaric Acids/metabolism , Hydrogen-Ion Concentration , Lignin/metabolism , Protein Domains , Soil
5.
Microb Biotechnol ; 11(2): 346-358, 2018 03.
Article in English | MEDLINE | ID: mdl-29316319

ABSTRACT

Filamentous fungi are robust cell factories and have been used for the production of large quantities of industrially relevant enzymes. However, the production levels of heterologous proteins still need to be improved. Therefore, this article aimed to investigate the global proteome profiling of Aspergillus nidulans recombinant strains in order to understand the bottlenecks of heterologous enzymes production. About 250, 441 and 424 intracellular proteins were identified in the control strain Anid_pEXPYR and in the recombinant strains Anid_AbfA and Anid_Cbhl respectively. In this context, the most enriched processes in recombinant strains were energy pathway, amino acid metabolism, ribosome biogenesis, translation, endoplasmic reticulum and oxidative stress, and repression under secretion stress (RESS). The global protein profile of the recombinant strains Anid_AbfA and Anid_Cbhl was similar, although the latter strain secreted more recombinant enzyme than the former. These findings provide insights into the bottlenecks involved in the secretion of recombinant proteins in A. nidulans, as well as in regard to the rational manipulation of target genes for engineering fungal strains as microbial cell factories.


Subject(s)
Aspergillus nidulans/chemistry , Enzymes/biosynthesis , Proteome/analysis , Recombinant Proteins/biosynthesis , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Enzymes/genetics , Recombinant Proteins/genetics
6.
Int J Biol Macromol ; 102: 779-788, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28412339

ABSTRACT

Microbial amylases are used to produce ethanol, glucose and can be applied in textiles products, detergents and other industries. This study aimed to determine the best carbon source concentration to induce the amylase production by A. japonicus, and its purification and biochemical characterization. For that, this fungus was cultivated in Khanna medium, pH 5.5, for 4 days, at 25°C, in static condition, supplemented with potato starch and maltose in different concentrations. The fungal crude enzymatic extract was purified in a unique elution in DEAE-cellulose column and the molecular mass was determined as 72kDa. The optimum temperature and pH was 65°C and 5.0, respectively. Amylase remained 75% of its activity after one hour at 50°C and was stable in the pH range 3.0-7.0. The analysis of the end-products by thin layer chromatography showed only glucose formation, which characterizes the purified enzyme as a glucoamylase. Amylopectin was the best substrate for the enzyme assay and Mn+2 and Pb+2 were good glucoamylase activators. This activation, in addition to the biochemical characteristics are important results for future biotechnological applications of this glucoamylase in the recycling and deinking process by the paper industries.


Subject(s)
Aspergillus/enzymology , Glucan 1,4-alpha-Glucosidase/isolation & purification , Glucan 1,4-alpha-Glucosidase/metabolism , Lead/pharmacology , Manganese/pharmacology , Amylose/metabolism , Dose-Response Relationship, Drug , Edetic Acid/pharmacology , Enzyme Activation/drug effects , Glucan 1,4-alpha-Glucosidase/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Maltose/pharmacology , Mercaptoethanol/pharmacology , Molecular Weight , Phylogeny , Temperature
7.
Genome Biol ; 18(1): 28, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28196534

ABSTRACT

BACKGROUND: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. RESULTS: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. CONCLUSIONS: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.


Subject(s)
Adaptation, Biological , Aspergillus/classification , Aspergillus/genetics , Biodiversity , Genome, Fungal , Genomics , Aspergillus/metabolism , Biomass , Carbon/metabolism , Computational Biology/methods , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , DNA Methylation , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Genomics/methods , Humans , Metabolic Networks and Pathways , Molecular Sequence Annotation , Multigene Family , Oxidoreductases/metabolism , Phylogeny , Plants/metabolism , Plants/microbiology , Secondary Metabolism/genetics , Signal Transduction , Stress, Physiological/genetics
8.
Appl Microbiol Biotechnol ; 101(7): 2893-2903, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28013403

ABSTRACT

Xyloglucan is the most abundant hemicellulose in primary walls of spermatophytes except for grasses. Xyloglucan-degrading enzymes are important in lignocellulosic biomass hydrolysis because they remove xyloglucan, which is abundant in monocot-derived biomass. Fungal genomes encode numerous xyloglucanase genes, belonging to at least six glycoside hydrolase (GH) families. GH74 endo-xyloglucanases cleave xyloglucan backbones with unsubstituted glucose at the -1 subsite or prefer xylosyl-substituted residues in the -1 subsite. In this work, 137 GH74-related genes were detected by examining 293 Eurotiomycete genomes and Ascomycete fungi contained one or no GH74 xyloglucanase gene per genome. Another interesting feature is that the triad of tryptophan residues along the catalytic cleft was found to be widely conserved among Ascomycetes. The GH74 from Aspergillus fumigatus (AfXEG74) was chosen as an example to conduct comprehensive biochemical studies to determine the catalytic mechanism. AfXEG74 has no CBM and cleaves the xyloglucan backbone between the unsubstituted glucose and xylose-substituted glucose at specific positions, along the XX motif when linked to regions deprived of galactosyl branches. It resembles an endo-processive activity, which after initial random hydrolysis releases xyloglucan-oligosaccharides as major reaction products. This work provides insights on phylogenetic diversity and catalytic mechanism of GH74 xyloglucanases from Ascomycete fungi.


Subject(s)
Aspergillus fumigatus/enzymology , Genome, Fungal , Glucans/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Xylans/metabolism , Ascomycota/enzymology , Ascomycota/genetics , Aspergillus fumigatus/genetics , Catalytic Domain/genetics , Glycoside Hydrolases/genetics , Glycosides/metabolism , Hydrolysis , Phylogeny , Substrate Specificity
9.
Biomed Res Int ; 2016: 8653583, 2016.
Article in English | MEDLINE | ID: mdl-28025649

ABSTRACT

This work reports the production of an exo-polygalacturonase (exo-PG) by Rhizomucor pusillus A13.36 in submerged cultivation (SmC) in a shaker at 45°C for 96 h. A single pectinase was found and purified in order to analyze its thermal stability, by salt precipitation and hydrophobic interaction chromatography. The pectinase has an estimated Mw of approximately 43.5-47 kDa and optimum pH of 4.0 but is stable in pH ranging from 3.5 to 9.5 and has an optimum temperature of 61°C. It presents thermal stability between 30 and 60°C, has 70% activation in the presence of Ca2+, and was tested using citrus pectin with a degree of methyl esterification (DE) of 26%. Ea(d) for irreversible denaturation was 125.5 kJ/mol with positive variations of entropy and enthalpy for that and ΔG(d) values were around 50 kJ/mol. The hydrolysis of polygalacturonate was analyzed by capillary electrophoresis which displayed a pattern of sequential hydrolysis (exo). The partial identification of the primary sequence was done by MS MALDI-TOF and a comparison with data banks showed the highest identity of the sequenced fragments of exo-PG from R. pusillus with an exo-pectinase from Aspergillus fumigatus. Pectin hydrolysis showed a sigmoidal curve for the Michaelis-Menten plot.


Subject(s)
Fungal Proteins , Polygalacturonase , Rhizomucor , Enzyme Stability , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Polygalacturonase/chemistry , Polygalacturonase/genetics , Polygalacturonase/isolation & purification , Polygalacturonase/metabolism , Rhizomucor/enzymology , Rhizomucor/genetics , Rhizomucor/growth & development
10.
FEMS Yeast Res ; 16(2): fov117, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26712719

ABSTRACT

In second-generation (2G) bioethanol production, plant cell-wall polysaccharides are broken down to release fermentable sugars. The enzymes of this process are classified as carbohydrate-active enzymes (CAZymes) and contribute substantially to the cost of biofuel production. A novel basidiomycete yeast species, Pseudozyma brasiliensis, was recently discovered. It produces an endo-ß-1,4-xylanase with a higher specific activity than other xylanases. This enzyme is essential for the hydrolysis of biomass-derived xylan and has an important role in 2G bioethanol production. In spite of the P. brasiliensis biotechnological potential, there is no information about how it breaks down polysaccharides. For the first time, we characterized the secretome of P. brasiliensis grown on different carbon sources (xylose, xylan, cellobiose and glucose) and also under starvation conditions. The growth and consumption of each carbohydrate and the activity of the CAZymes of culture supernatants were analyzed. The CAZymes found in its secretomes, validated by enzymatic assays, have the potential to hydrolyze xylan, mannan, cellobiose and other polysaccharides. The data show that this yeast is a potential source of hydrolases, which can be used for biomass saccharification.


Subject(s)
Ethanol/metabolism , Glycoside Hydrolases/metabolism , Plants/chemistry , Polysaccharides/metabolism , Ustilaginales/enzymology , Ustilaginales/metabolism
11.
J Biochem ; 154(3): 275-80, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23756760

ABSTRACT

Plant cell-wall arabinoxylans have a complex structure that requires the action of a pool of debranching (arabinofuranosidases) and depolymerizing enzymes (endo-xylanase). Two Aspergillus nidulans strains over-secreting endo-xylanase and arabinofuranosidase were inoculated in defined 2% maltose-minimum medium resulting in the simultaneously production of these enzymes. To study the synergistic hydrolysis was used arabinoxylan with 41% of arabinose and 59% of xylose residues. Thus, it was adopted different approaches to arabinoxylan hydrolysis using immobilized arabinofuranosidase and endo-xylanase: (i) endo-xylanase immobilized on glyoxyl agarose; (ii) arabinofuranosidase immobilized on glyoxyl agarose; (T1) hydrolysis of arabinoxylan with arabinofuranosidase immobilized on glyoxyl agarose for debranching, followed by a second hydrolysis with endo-xylanase immobilized on glyoxyl agarose; (T2) hydrolysis using (i) and (ii) simultaneously; and (T3) hydrolysis of arabinoxylan with endo-xylanase and arabinofuranosidase co-immobilized on glyoxyl agarose. It was concluded that arabinoxylan hydrolysis using two derivatives simultaneously (T2) showed greater hydrolytic efficiency and consequently a higher products yield. However, the hydrolysis with multi-enzymatic derivative (T3) results in direct release of xylose and arabinose from a complex substrate as arabinoxylan, which is a great advantage as biotechnological application of this derivative, especially regarding the application of biofuels, since these monosaccharides are readily assimilable for fermentation and ethanol production.


Subject(s)
Aspergillus nidulans/enzymology , Endo-1,4-beta Xylanases/chemistry , Fungal Proteins/chemistry , Glycoside Hydrolases/chemistry , Immobilized Proteins/chemistry , Xylans/chemistry , Arabinose/chemistry , Aspergillus nidulans/chemistry , Culture Media , Endo-1,4-beta Xylanases/isolation & purification , Fermentation , Fungal Proteins/isolation & purification , Glycoside Hydrolases/isolation & purification , Glyoxylates/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Immobilized Proteins/isolation & purification , Kinetics , Sepharose/chemistry , Substrate Specificity , Temperature , Xylose/chemistry
12.
Folia Microbiol (Praha) ; 58(6): 615-21, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23613286

ABSTRACT

A thermotolerant fungus identified as Aspergillus niveus was isolated from decomposing materials and it has produced excellent levels of hydrolytic enzymes that degrade plant cell walls. A. niveus germinated faster at 40 °C, presenting protein levels almost twofold higher than at 25 °C. The crude extract of the A. niveus culture was purified by diethylaminoethyl (DEAE)-cellulose, followed by Biogel P-100 column. Polygalacturonase (PG) is a glycoprotein with 37.7 % carbohydrate, molecular mass of 102.6 kDa, and isoelectric point of 5.4. The optimum temperature and pH were 50 °C and 4.0-6.5, respectively. The enzyme was stable at pH 3.0 to 9.0 for 24 h. The DEAE-cellulose derivative was about sixfold more stable at 60 °C than the free enzyme. Moreover, the monoaminoethyl-N-aminoethyl-agarose derivative was tenfold more stable than the free enzyme. PG was 232 % activated by Mn(2+). The hydrolysis product of sodium polypectate corresponded at monogalacturonic acid, which classifies the enzyme as an exo-PG. The K m, V max, K cat, and K cat/K m values were 6.7 mg/ml, 230 U/mg, 393.3/s, and 58.7 mg/ml/s, respectively. The N-terminal amino acid sequence presented 80 % identity with PglB1, PglA2, and PglA3 putative exo-PG of Aspergillus fumigatus and an exo-PG Neosartorya fischeri.


Subject(s)
Aspergillus/enzymology , Enzyme Activators/metabolism , Manganese/metabolism , Polygalacturonase/metabolism , Aspergillus/growth & development , Aspergillus/isolation & purification , Cluster Analysis , Environmental Microbiology , Enzyme Stability , Hexuronic Acids/metabolism , Hydrogen-Ion Concentration , Isoelectric Point , Kinetics , Molecular Weight , Phylogeny , Polygalacturonase/chemistry , Polygalacturonase/isolation & purification , Sequence Homology, Amino Acid , Temperature
13.
Folia Microbiol (Praha) ; 58(6): 495-502, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23463193

ABSTRACT

An extracellular amylase secreted by Aspergillus niveus was purified using DEAE fractogel ion exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5 % polyacrylamide gel electrophoresis (PAGE) and 10 % sodium dodecyl sulfate (SDS-PAGE). The enzyme exhibited 4.5 % carbohydrate content, 6.6 isoelectric point, and 60 and 52 kDa molar mass estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The amylase efficiently hydrolyzed glycogen, amylose, and amylopectin. The end-products formed after 24 h of starch hydrolysis, analyzed by thin layer chromatography, were maltose, maltotriose, maltotetraose, and maltopentaose, which classified the studied amylase as an α-amylase. Thermal stability of the α-amylase was improved by covalent immobilization on glyoxyl agarose (half-life of 169 min, at 70 °C). On the other hand, the free α-amylase showed a half-life of 20 min at the same temperature. The optima of pH and temperature were 6.0 and 65 °C for both free and immobilized forms.


Subject(s)
Aspergillus/enzymology , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , alpha-Amylases/isolation & purification , alpha-Amylases/metabolism , Amino Acid Sequence , Amylopectin/metabolism , Amylose/metabolism , Chromatography, Gel , Chromatography, Ion Exchange , Chromatography, Thin Layer , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Glycogen/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Molecular Sequence Data , Sequence Alignment , Temperature
14.
Braz. arch. biol. technol ; 54(1): 141-148, Jan.-Feb. 2011. graf, tab
Article in English | LILACS | ID: lil-576770

ABSTRACT

Fungi collected from Brazilian soil and decomposing plants were screened for pectinase production. R. microsporus var. rhizopodiformis was the best producer and was selected to evaluate the pectic enzyme production under several nutritional and environmental conditions. The pectinase production was studied at 40ºC, under 28 carbon sources-supplemented medium. The inducer effect of several agro-industrial residues such as sugar cane bagasse, wheat flour and corncob on polygalacturonase (PG) activity was 4-, 3- and 2-fold higher than the control (pectin). In glucose-medium, a constitutive pectin lyase (PL) activity was detected. The results demonstrated that R. microsporus produced high levels of PG (57.7 U/mg) and PL (88.6 U/mg) in lemon peel-medium. PG had optimum temperature at 65 ºC and was totally stable at 55 ºC for 90 min. Half-life at 70 ºC was 68 min. These results suggested that the versatility of waste carbon sources utilization by R. microsporus, produce pectic enzymes, which could be useful to reduce production costs and environmental impacts related to the waste disposal.

15.
Biotechnol Lett ; 32(10): 1449-55, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20490616

ABSTRACT

Treatment of Aspergillus niveus with 30 µg tunicamycin/ml did not interfere with α-glucosidase production, secretion, or its catalytic properties. Fully- and under-glycosylated forms of the enzyme had similar molecular masses, ~56 kDa. Moreover, the absence of N-glycans did not affect either pH optimum (6.0) or temperature optimum (65°C). The K(m) and V(max) values of under- and fully-glycosylated forms of α-glucosidase were similar when assessed for hydrolysis of starch (~0.6 mg/ml, ~350 µmol glucose per min per ml), maltose (~0.54 µmol, ~330 µmol glucose per min per ml) and p-nitrophenyl-α-D: -glucopyranoside (~0.54 µmol, ~8.28 µmol p-nitrophenol per min per ml). However, the under-glycosylated form was sensitive to high temperatures probably because, in addition to stabilizing the protein conformation, glycosylation may also prevent unfolded or partially folded proteins from aggregating. Binding assays clearly showed that the under-glycosylated protein did not bind to concanavalin A but has conserve its jacalin-binding property, suggesting that only O-glycans might be intact on the tunicamycin treated form of the enzyme.


Subject(s)
Aspergillus/drug effects , Aspergillus/enzymology , Enzyme Inhibitors/pharmacology , Fungal Proteins/antagonists & inhibitors , Glycoside Hydrolase Inhibitors , Tunicamycin/pharmacology , Electrophoretic Mobility Shift Assay , Enzyme Stability , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Glycosylation/drug effects , Hydrogen-Ion Concentration , Kinetics , Maltose/metabolism , Molecular Weight , Nitrophenylgalactosides/metabolism , Starch/metabolism , Temperature , alpha-Glucosidases/chemistry , alpha-Glucosidases/isolation & purification , alpha-Glucosidases/metabolism
16.
Antonie Van Leeuwenhoek ; 96(4): 569-78, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19757138

ABSTRACT

An extracellular a-glucosidase produced by Aspergillus niveus was purified using DEAE-Fractogel ion-exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5% PAGE and 10% SDS-PAGE. The enzyme presented 29% of glycosylation, an isoelectric point of 6.8 and a molecular weight of 56 and 52 kDa as estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The enzyme showed typical alpha-glucosidase activity, hydrolyzing p-nitrophenyl alpha-D-glucopyranoside and presented an optimum temperature and pH of 65 degrees C and 6.0, respectively. In the absence of substrate the purified alpha-glucosidase was stable for 60 min at 60 degrees C, presenting t(50) of 90 min at 65 degrees C. Hydrolysis of polysaccharide substrates by alpha-glucosidase decreased in the order of glycogen, amylose, starch and amylopectin. Among malto-oligosaccharides the enzyme preferentially hydrolyzed malto-oligosaccharide (G10), maltopentaose, maltotetraose, maltotriose and maltose. Isomaltose, trehalose and beta-ciclodextrin were poor substrates, and sucrose and alpha-ciclodextrin were not hydrolyzed. After 2 h incubation, the products of starch hydrolysis measured by HPLC and thin layer chromatography showed only glucose. Mass spectrometry of tryptic peptides revealed peptide sequences similar to glucan 1,4-alpha-glucosidases from Aspergillus fumigatus, and Hypocrea jecorina. Analysis of the circular dichroism spectrum predicted an a-helical content of 31% and a beta-sheet content of 16%, which is in agreement with values derived from analysis of the crystal structure of the H. jecorina enzyme.


Subject(s)
Aspergillus/enzymology , alpha-Glucosidases/isolation & purification , alpha-Glucosidases/metabolism , Amino Acid Sequence , Chromatography, Gel/methods , Chromatography, Ion Exchange/methods , Circular Dichroism , Enzyme Stability , Glucosides/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Hypocrea , Isoelectric Point , Mass Spectrometry , Molecular Sequence Data , Molecular Weight , Monosaccharides/metabolism , Oligosaccharides/metabolism , Polysaccharides/metabolism , Protein Conformation , Protein Structure, Secondary , Sequence Homology, Amino Acid , Substrate Specificity , Time Factors , alpha-Glucosidases/chemistry
17.
J Ind Microbiol Biotechnol ; 36(12): 1439-46, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19697071

ABSTRACT

A glucoamylase from Aspergillus niveus was produced by submerged fermentation in Khanna medium, initial pH 6.5 for 72 h, at 40 degrees C. The enzyme was purified by DEAE-Fractogel and Concanavalin A-Sepharose chromatography. The enzyme showed 11% carbohydrate content, an isoelectric point of 3.8 and a molecular mass of 77 and 76 kDa estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Bio-Sil-Sec-400 gel filtration, respectively. The pH optimum was 5.0-5.5, and the enzyme remained stable for at least 2 h in the pH range of 4.0-9.5. The temperature optimum was 65 degrees C and retained 100% activity after 240 min at 60 degrees C. The glucoamylase remained completely active in the presence of 10% methanol and acetone. After 120 min hydrolysis of starch, glucose was the unique product formed, confirming that the enzyme was a glucoamylase (1,4-alpha-D-glucan glucohydrolase). The K(m) was calculated as 0.32 mg ml(-1). Circular dichroism spectroscopy estimated a secondary structure content of 33% alpha-helix, 17% beta-sheet and 50% random structure, which is similar to that observed in the crystal structures of glucoamylases from other Aspergillus species. The tryptic peptide sequence analysis showed similarity with glucoamylases from A. niger, A. kawachi, A. ficcum, A. terreus, A. awamori and A. shirousami. We conclude that the reported properties, such as solvent, pH and temperature stabilities, make A. niveus glucoamylase a potentially attractive enzyme for biotechnological applications.


Subject(s)
Aspergillus/enzymology , Glucan 1,4-alpha-Glucosidase/chemistry , Amino Acid Sequence , Aspergillus/metabolism , Chromatography , Chromatography, Gel , Circular Dichroism , Enzyme Stability , Glucan 1,4-alpha-Glucosidase/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...