Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Hum Mutat ; 43(3): 403-419, 2022 03.
Article in English | MEDLINE | ID: mdl-34989426

ABSTRACT

Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan-Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals.


Subject(s)
Epilepsy, Generalized , Microcephaly , Pyrophosphatases , Humans , Inosine , Inosine Triphosphate , Microcephaly/pathology , Mutation , Prognosis , Pyrophosphatases/genetics , Inosine Triphosphatase
2.
Nat Commun ; 11(1): 2441, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415109

ABSTRACT

KIF21B is a kinesin protein that promotes intracellular transport and controls microtubule dynamics. We report three missense variants and one duplication in KIF21B in individuals with neurodevelopmental disorders associated with brain malformations, including corpus callosum agenesis (ACC) and microcephaly. We demonstrate, in vivo, that the expression of KIF21B missense variants specifically recapitulates patients' neurodevelopmental abnormalities, including microcephaly and reduced intra- and inter-hemispheric connectivity. We establish that missense KIF21B variants impede neuronal migration through attenuation of kinesin autoinhibition leading to aberrant KIF21B motility activity. We also show that the ACC-related KIF21B variant independently perturbs axonal growth and ipsilateral axon branching through two distinct mechanisms, both leading to deregulation of canonical kinesin motor activity. The duplication introduces a premature termination codon leading to nonsense-mediated mRNA decay. Although we demonstrate that Kif21b haploinsufficiency leads to an impaired neuronal positioning, the duplication variant might not be pathogenic. Altogether, our data indicate that impaired KIF21B autoregulation and function play a critical role in the pathogenicity of human neurodevelopmental disorder.


Subject(s)
Kinesins/genetics , Motor Activity , Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Animals , Axons/metabolism , Cell Movement , Cell Proliferation , Cerebral Cortex/embryology , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Female , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Male , Mice , Mutation, Missense/genetics , Nerve Net/pathology , Nerve Net/physiopathology , Neurons/metabolism , Organ Size , Organogenesis/genetics , Pedigree , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zebrafish/anatomy & histology , Zebrafish/genetics
3.
Hum Genet ; 135(7): 699-705, 2016 07.
Article in English | MEDLINE | ID: mdl-27048600

ABSTRACT

Whole exome sequencing (WES) can be used to efficiently identify de novo genetic variants associated with genetically heterogeneous conditions including intellectual disabilities. We have performed WES for 4102 (1847 female; 2255 male) intellectual disability/developmental delay cases and we report five patients with a neurodevelopmental disorder associated with developmental delay, intellectual disability, behavioral problems, hypotonia, speech problems, microcephaly, pachygyria and dysmorphic features in whom we have identified de novo missense and canonical splice site mutations in CSNK2A1, the gene encoding CK2α, the catalytic subunit of protein kinase CK2, a ubiquitous serine/threonine kinase composed of two regulatory (ß) and two catalytic (α and/or α') subunits. Somatic mutations in CSNK2A1 have been implicated in various cancers; however, this is the first study to describe a human condition associated with germline mutations in any of the CK2 subunits.


Subject(s)
Body Dysmorphic Disorders/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Body Dysmorphic Disorders/physiopathology , Casein Kinase II/genetics , Child , Child, Preschool , Exome/genetics , Female , Genetic Predisposition to Disease , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/pathology , Mutation , Neurodevelopmental Disorders/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL