ABSTRACT
Brucellosis is an infection widely distributed around the world, and in some countries it is considered a public health problem. Brucellosis causes insidious symptoms that make it difficult to diagnose. Infection can also trigger chronic pain and neuropsychiatric complications. Antibiotics are not always effective to eradicate infection, contributing to chronicity. We aimed to investigate the effects of antibiotic treatment on proinflammatory cytokines, neurotransmitters, corticosterone, and behavior in a murine model of infecrion of B. abortus strain 2308. Four study groups were created: (a) control; (b) antibiotic control; (c) infected with B. abortus 2308; and (d) infected and treated with rifampicin and doxycycline. We determined B. abortus 2308 colony-forming units (CFUs), the count of dendritic cells, and macrophages in the spleen; serum levels of cytokines and corticosterone; levels of serotonin, dopamine, epinephrine, and norepinephrine in the brain; and equilibrium, physical strength, anxiety, and hopelessness tests. The infected and treated mice group was compared with the control and infected mice to assess whether treatment is sufficient to recover neuroimmunoendocrine parameters. Our results showed that despite the treatment of brucellosis with rifampicin and doxycycline, antibiotic-treated mice showed a persistence of B. abortus 2308 CFUs, an increased count in macrophage number, and higher circulating levels of corticosterone. Furthermore, the levels of IL-12, IL-6, and TNF-α remained higher. We found a decrease in muscular strength and equilibrium concomitant to changes in neurotransmitters in the hippocampus, cerebellum, and frontal cortex. Our data suggest that the remaining bacterial load after antibiotic administration favors inflammatory, neurochemical, and behavioral alterations, partly explaining the widespread and paradoxical symptomatology experienced by patients with chronic brucellosis.
ABSTRACT
Brucellosis infection causes non-specific symptoms such as fever, chills, sweating, headaches, myalgia, arthralgia, anorexia, fatigue, and mood disorders. In mouse models, it has been associated with increased levels of IL-6, TNF-α, and IFN-γ, a decrease in serotonin and dopamine levels within the hippocampus, induced loss of muscle strength and equilibrium, and increased anxiety and hopelessness. Imipramine (ImiP), a tricyclic antidepressant, is used to alleviate neuropathic pain. This study evaluated the effects of ImiP on Balb/c mice infected with Brucella abortus 2308 (Ba) at 14- and 28-days post-infection. Serum levels of six cytokines (IFN-γ, IL-6, TNF-α, IL-12, MCP-1. and IL-10) were assessed by FACS, while the number of bacteria in the spleen was measured via CFU. Serotonin levels in the hippocampus were analyzed via HPLC, and behavioral tests were conducted to assess strength, equilibrium, and mood. Our results showed that mice infected with Brucella abortus 2308 and treated with ImiP for six days (Im6Ba14) had significantly different outcomes compared to infected mice (Ba14) at day 14 post-infection. The mood was enhanced in the forced swimming test (FST) (p < 0.01), tail suspension test (TST) (p < 0.0001), and open-field test (p < 0.0001). Additionally, there was an increase in serotonin levels in the hippocampus (p < 0.001). Furthermore, there was an improvement in equilibrium (p < 0.0001) and muscle strength (p < 0.01). Lastly, there was a decrease in IL-6 levels (p < 0.05) and CFU count in the spleen (p < 0.0001). At 28 days, infected mice that received ImiP for 20 days (Im20Ba28) showed preservation of positive effects compared to infected mice (Ba28). These effects include the following: (1) improved FST (p < 0.0001) and TST (p < 0.0001); (2) better equilibrium (p < 0.0001) and muscle strength (p < 0.0001); (3) decreased IL-6 levels (p < 0.05); and (4) reduced CFU count in the spleen (p < 0.0001). These findings suggest the potential for ImiP to be used as an adjuvant treatment for the symptoms of brucellosis, which requires future studies.
ABSTRACT
OBJECTIVE: This work aimed to determine if cataractous changes associated with EMT occurring in the K14E6 mice lenses are associated with TGF-ß and Wnt/ß-catenin signaling activation. MATERIALS AND METHODS: Cataracts of K14E6 mice were analysed histologically; and components of TGF-ß and Wnt/ß-catenin signaling were evaluated by Western blot, RT-qPCR, in situ RT-PCR, IHC, or IF technics. Metalloproteinases involved in EMT were also assayed using zymography. The endogenous stabilisation of Smad7 protein was also assessed using an HDAC inhibitor. RESULTS: The K14E6 mice, which displayed binocular cataracts in 100% of the animals, exhibited loss of tissue organisation, cortical liquefaction, and an increase in the number of hyperproliferative-nucleated cells with mesenchymal-like characteristics in the lenses. Changes in lenses' cell morphology were due to actin filaments reorganisation, activation of TGF-ß and Wnt/ß-catenin pathways, and the accumulation of MTA1 protein. Finally, the stabilisation of Smad7 protein diminishes cell proliferation, as well as MTA1 protein levels. CONCLUSION: The HPV16-E6 oncoprotein induces EMT in transgenic mice cataracts. The molecular mechanism may involve TGF-ß and Wnt/ß-catenin pathways, suggesting that the K14E6 transgenic mouse could be a useful model for the study or treatment of EMT-induced cataracts.
Subject(s)
Cataract/metabolism , Epithelial-Mesenchymal Transition , Human papillomavirus 16/metabolism , Oncogene Proteins, Viral/biosynthesis , Repressor Proteins/biosynthesis , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway , Animals , Cataract/genetics , Cataract/pathology , Disease Models, Animal , Human papillomavirus 16/genetics , Mice , Mice, Transgenic , Oncogene Proteins, Viral/genetics , Repressor Proteins/genetics , Transforming Growth Factor beta/geneticsABSTRACT
Objective. The aim of this study was to analyze the effects of the HPV16 E7 oncoprotein on dendritic cells (DCs) and CD11b(+)Gr1(+) cells using the K14E7 transgenic mouse model. Materials and Methods. The morphology of DCs was analyzed in male mouse skin on epidermal sheets using immunofluorescence and confocal microscopy. Flow cytometry was used to determine the percentages of DCs and CD11b(+)Gr1(+) cells in different tissues and to evaluate the migration of DCs. Results. In the K14E7 mouse model, the morphology of Langerhans cells and the migratory activity of dendritic cells were abnormal. An increase in CD11b(+)Gr1(+) cells was observed in the blood and skin of K14E7 mice, and molecules related to CD11b(+)Gr1(+) chemoattraction (MCP1 and S100A9) were upregulated. Conclusions. These data suggest that the HPV16 E7 oncoprotein impairs the function and morphology of DCs and induces the systemic accumulation of CD11b(+)Gr1(+) cells.