Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(7): e0305207, 2024.
Article in English | MEDLINE | ID: mdl-38968330

ABSTRACT

Increasing reports of insecticide resistance continue to hamper the gains of vector control strategies in curbing malaria transmission. This makes identifying new insecticide targets or alternative vector control strategies necessary. CLassifier of Essentiality AcRoss EukaRyote (CLEARER), a leave-one-organism-out cross-validation machine learning classifier for essential genes, was used to predict essential genes in Anopheles gambiae and selected predicted genes experimentally validated. The CLEARER algorithm was trained on six model organisms: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and employed to identify essential genes in An. gambiae. Of the 10,426 genes in An. gambiae, 1,946 genes (18.7%) were predicted to be Cellular Essential Genes (CEGs), 1716 (16.5%) to be Organism Essential Genes (OEGs), and 852 genes (8.2%) to be essential as both OEGs and CEGs. RNA interference (RNAi) was used to validate the top three highly expressed non-ribosomal predictions as probable vector control targets, by determining the effect of these genes on the survival of An. gambiae G3 mosquitoes. In addition, the effect of knockdown of arginase (AGAP008783) on Plasmodium berghei infection in mosquitoes was evaluated, an enzyme we computationally inferred earlier to be essential based on chokepoint analysis. Arginase and the top three genes, AGAP007406 (Elongation factor 1-alpha, Elf1), AGAP002076 (Heat shock 70kDa protein 1/8, HSP), AGAP009441 (Elongation factor 2, Elf2), had knockdown efficiencies of 91%, 75%, 63%, and 61%, respectively. While knockdown of HSP or Elf2 significantly reduced longevity of the mosquitoes (p<0.0001) compared to control groups, Elf1 or arginase knockdown had no effect on survival. However, arginase knockdown significantly reduced P. berghei oocytes counts in the midgut of mosquitoes when compared to LacZ-injected controls. The study reveals HSP and Elf2 as important contributors to mosquito survival and arginase as important for parasite development, hence placing them as possible targets for vector control.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , RNA Interference , Animals , Anopheles/genetics , Anopheles/parasitology , Malaria/prevention & control , Malaria/transmission , Malaria/parasitology , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Computational Biology/methods , Mice , Humans , Mosquito Control/methods , Genes, Essential , Female , Plasmodium berghei/genetics
2.
Food Funct ; 15(14): 7468-7477, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38912918

ABSTRACT

Dietary fiber has been shown to have multiple health benefits, including a positive effect on longevity and the gut microbiota. In the present study, Drosophila melanogaster has been chosen as an in vivo model organism to study the health effects of dietary fiber supplementation (DFS). DFS extended the mean half-life of male and female flies, but the absolute lifespan only increased in females. To reveal the underlying mechanisms, we examined the effect of DFS on gut microbiota diversity and abundance, local gut immunity, and the brain proteome. A significant difference in the gut microbial community was observed between groups with and without fiber supplementation, which reduced the gut pathogenic bacterial load. We also observed an upregulated expression of dual oxidase and a modulated expression of Attacin and Diptericin genes in the gut of older flies, possibly delaying the gut dysbiosis connected to the age-related gut immune dysfunction. Brain proteome analysis showed that DFS led to the modulation of metabolic processes connected to mitochondrial biogenesis, the RhoV-GTPase cycle, organelle biogenesis and maintenance, membrane trafficking and vesicle-mediated transport, possibly orchestrated through a gut-brain axis interaction. Taken together, our study shows that DFS can prolong the half-life and lifespan of flies, possibly by promoting a healthier gut environment and delaying the physiological dysbiosis that characterizes the ageing process. However, the RhoV-GTPase cycle at the brain level may deserve more attention in future studies.


Subject(s)
Dietary Fiber , Dietary Supplements , Drosophila melanogaster , Gastrointestinal Microbiome , Longevity , Animals , Gastrointestinal Microbiome/drug effects , Longevity/drug effects , Female , Male , Dietary Fiber/pharmacology , Dietary Fiber/metabolism , Brain/metabolism
3.
Microorganisms ; 12(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38543596

ABSTRACT

Microbial communities play an important role in the fitness of mosquito hosts. However, the factors shaping microbial communities in wild populations, with regard to interactions among microbial species, are still largely unknown. Previous research has demonstrated that two of the most studied mosquito symbionts, the bacteria Wolbachia and Asaia, seem to compete or not compete, depending on the genetic background of the reference mosquito host. The large diversity of Wolbachia-Asaia strain combinations that infect natural populations of mosquitoes may offer a relevant opportunity to select suitable phenotypes for the suppression of pathogen transmission and for the manipulation of host reproduction. We surveyed Wolbachia and Asaia in 44 mosquito populations belonging to 11 different species of the genera Anopheles, Aedes, and Culex using qualitative PCR. Through quantitative PCR, the amounts of both bacteria were assessed in different mosquito organs, and through metagenomics, we determined the microbiota compositions in some selected mosquito populations. We show that variation in microbial community structure is likely associated with the species/strain of mosquito, its geographical position, and tissue localization. Together, our results shed light on the interactions among different bacterial species in the microbial communities of mosquito vectors, and this can aid the development and/or improvement of methods for symbiotic control of insect vectors.

4.
Mol Cell Proteomics ; 23(3): 100736, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342407

ABSTRACT

The oocyst is a sporogonic stage of Plasmodium development that takes place in the mosquito midgut in about 2 weeks. The cyst is protected by a capsule of unknown composition, and little is known about oocyst biology. We carried out a proteomic analysis of oocyst samples isolated at early, mid, and late time points of development. Four biological replicates for each time point were analyzed, and almost 600 oocyst-specific candidates were identified. The analysis revealed that, in young oocysts, there is a strong activity of protein and DNA synthesis, whereas in mature oocysts, proteins involved in oocyst and sporozoite development, gliding motility, and invasion are mostly abundant. Among the proteins identified at early stages, 17 candidates are specific to young oocysts. Thirty-four candidates are common to oocyst and the merosome stages (sporozoite proteins excluded), sharing common features as replication and egress. Western blot and immunofluorescence analyses of selected candidates confirm the expression profile obtained by proteomic analysis.


Subject(s)
Anopheles , Plasmodium , Animals , Oocysts/metabolism , Proteomics , Sporozoites/metabolism , Protozoan Proteins/metabolism
5.
Parasit Vectors ; 16(1): 427, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986088

ABSTRACT

BACKGROUND: Recently, two invasive Aedes mosquito species, Ae. japonicus and Ae. koreicus, are circulating in several European countries posing potential health risks to humans and animals. Vector control is the main option to prevent mosquito-borne diseases, and an accurate genome sequence of these mosquitoes is essential to better understand their biology and to develop effective control strategies. METHODS: A de novo genome assembly of Ae. japonicus (Ajap1) and Ae. koreicus (Akor1) has been produced based on a hybrid approach that combines Oxford Nanopore long-read and Illumina short-read data. Their quality was ascertained using various metrics. Masking of repetitive elements, gene prediction and functional annotation was performed. RESULTS: Sequence analysis revealed a very high presence of repetitive DNA and, among others, thermal adaptation genes and insecticide-resistance genes. Through the RNA-seq analysis of larvae and adults of Ae. koreicus and Ae. japonicus exposed to different temperatures, we also identified genes showing a differential temperature-dependent activation. CONCLUSIONS: The assembly of Akor1 and Ajap1 genomes constitutes the first updated collective knowledge of the genomes of both mosquito species, providing the possibility of understanding key mechanisms of their biology such as the ability to adapt to harsh climates and to develop insecticide-resistance mechanisms.


Subject(s)
Aedes , Insecticides , Animals , Humans , Aedes/genetics , Introduced Species , Mosquito Vectors/genetics , Europe
6.
Front Microbiol ; 14: 1157613, 2023.
Article in English | MEDLINE | ID: mdl-37533823

ABSTRACT

Introduction: Malaria transmission occurs when Plasmodium sporozoites are transferred from the salivary glands of anopheline mosquitoes to a human host through the injection of saliva. The need for better understanding, as well as novel modes of inhibiting, this key event in transmission has driven intense study of the protein and miRNA content of saliva. Until now the possibility that mosquito saliva may also contain bacteria has remained an open question despite the well documented presence of a rich microbiome in salivary glands. Methods: Using both 16S rRNA sequencing and MALDI-TOF approaches, we characterized the composition of the saliva microbiome of An. gambiae and An. stephensi mosquitoes which respectively represent two of the most important vectors for the major malaria-causing parasites P. falciparum and P. vivax. Results: To eliminate the possible detection of non-mosquito-derived bacteria, we used a transgenic, fluorescent strain of one of the identified bacteria, Serratiamarcescens, to infect mosquitoes and detect its presence in mosquito salivary glands as well as its transfer to, and colonization of, mammalian host tissues following a mosquito bite. We also showed that Plasmodium infection modified the mosquito microbiota, increasing the presence of Serratia while diminishing the presence of Elizabethkingia and that both P. berghei and Serratia were transferred to, and colonized mammalian tissues. Discussion: These data thus document the presence of bacteria in mosquito saliva, their transfer to, and growth in a mammalian host as well as possible interactions with Plasmodium transmission. Together they raise the possible role of mosquitoes as vectors of bacterial infection and the utility of commensal mosquito bacteria for the development of transmission-blocking strategies within a mammalian host.

7.
Front Microbiol ; 14: 1157299, 2023.
Article in English | MEDLINE | ID: mdl-37396392

ABSTRACT

It is shown that bacteria use yeast as a niche for survival in stressful conditions, therefore yeasts may act as temporary or permanent bacterial reservoirs. Endobacteria colonise the fungal vacuole of various osmotolerant yeasts which survive and multiply in sugar-rich sources such as plant nectars. Nectar-associated yeasts are present even in the digestive system of insects and often establish mutualistic symbioses with both hosts. Research on insect microbial symbioses is increasing but bacterial-fungal interactions are yet unexplored. Here, we have focused on the endobacteria of Wickerhamomyces anomalus (formerly Pichia anomala and Candida pelliculosa), an osmotolerant yeast associated with sugar sources and the insect gut. Symbiotic strains of W. anomalus influence larval development and contribute digestive processes in adults, in addition to exerting wide antimicrobial properties for host defence in diverse insects including mosquitoes. Antiplasmodial effects of W. anomalus have been shown in the gut of the female malaria vector mosquito Anopheles stephensi. This discovery highlights the potential of utilizing yeast as a promising tool for symbiotic control of mosquito-borne diseases. In the present study, we have carried out a large Next Generation Sequencing (NGS) metagenomics analysis including W. anomalus strains associated with vector mosquitoes Anopheles, Aedes and Culex, which has highlighted wide and heterogeneous EB communities in yeast. Furthermore, we have disclosed a Matryoshka-like association in the gut of A stephensi that comprises different EB in the strain of W. anomalus WaF17.12. Our investigations started with the localization of fast-moving bacteria-like bodies within the yeast vacuole of WaF17.12. Additional microscopy analyses have validated the presence of alive intravacuolar bacteria and 16S rDNA libraries from WaF17.12 have identified a few bacterial targets. Some of these EB have been isolated and tested for lytic properties and capability to re-infect the yeast cell. Moreover, a selective competence to enter yeast cell has been shown comparing different bacteria. We suggested possible tripartite interactions among EB, W. anomalus and the host, opening new knowledge on the vector biology.

8.
Insects ; 13(5)2022 May 19.
Article in English | MEDLINE | ID: mdl-35621808

ABSTRACT

Ceratitis capitata (Diptera: Tephritidae) is responsible for extensive damage in agriculture with important economic losses. Several strategies have been proposed to control this insect pest including insecticides and the Sterile Insect Technique. Traditional control methods should be implemented by innovative tools, among which those based on insect symbionts seem very promising. Our study aimed to investigate, through the 16S Miseq analysis, the microbial communities associated with selected organs in three different medfly populations to identify possible candidates to develop symbiont-based control approaches. Our results confirm that Klebsiella and Providencia are the dominant bacteria in guts, while a more diversified microbial community has been detected in reproductive organs. Concertedly, we revealed for the first time the presence of Chroococcidiopsis and Propionibacterium as stable components of the medfly's microbiota. Additionally, in the reproductive organs, we detected Asaia, a bacterium already proposed as a tool in the Symbiotic Control of Vector-Borne Diseases. A strain of Asaia, genetically modified to produce a green fluorescent protein, was used to ascertain the ability of Asaia to colonize specific organs of C. capitata. Our study lays the foundation for the development of control methods for C. capitata based on the use of symbiont bacteria.

9.
Parasit Vectors ; 15(1): 67, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35209944

ABSTRACT

BACKGROUND: Releasing considerable numbers of radiation-sterilized males is a promising strategy to suppress mosquito vectors. However, releases may also include small percentages of biting females, which translate to non-negligible numbers when releases are large. Currently, the effects of irradiation on host-seeking and host-biting behaviors have not been exhaustively investigated. Information is also lacking regarding the effects of sterilizing treatment on the endosymbiotic bacterium Wolbachia, which is known to affect the vector competence of infected mosquitos. METHODS: To ascertain the effects of irradiation on females, the pupae of two Aedes albopictus strains, differing in their natural or artificial Wolbachia infection type, and Aedes aegypti-which is not infected by Wolbachia-were treated with various doses of X-rays and monitored for key fitness parameters and biting behavior over a period of 2 weeks. The effect of radiation on Wolbachia was investigated by quantitative polymerase chain reaction (qPCR) and fluorescence in situ hybridization (FISH) analysis. RESULTS: Partial Aedes albopictus female sterility was achieved at 28 Gy, but the number of weekly bites more than doubled compared to that of the controls. Radiation doses of 35 and 45 Gy completely inhibited progeny production but did not significantly affect the survival or flight ability of Ae. albopictus females and caused a tripling of the number of bites per female per week (compared to untreated controls). These results were also confirmed in Ae. aegypti after treatment at 50 Gy. Wolbachia density decreased significantly in 45-Gy-irradiated females, with the greatest decreases in the early irradiation group (26 ± 2-h-old pupae). Wolbachia density also decreased as adults aged. This trend was confirmed in ovaries but not in extra-ovarian tissues. FISH analysis showed a strongly reduced Wolbachia-specific fluorescence in the ovaries of 13 ± 1-day-old females. CONCLUSIONS: These results suggest that, under sterile insect technique (SIT) programs, the vector capacity of a target population could increase with the frequency of the irradiated females co-released with the sterile males due to an increased biting rate. In the context of successful suppression, the related safety issues are expected to be generally negligible, but they should be conservatively evaluated when large-scale programs relying on imperfect sexing and high overflooding release ratios are run for long periods in areas endemic for arboviral diseases. Also, the effects of irradiation on the vector competence deserve further investigation.


Subject(s)
Aedes , Infertility, Male , Wolbachia , Aedes/microbiology , Animals , Female , In Situ Hybridization, Fluorescence , Male , Mosquito Control/methods , Wolbachia/genetics
10.
Insects ; 13(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35206789

ABSTRACT

The emerging distribution of new alien mosquito species was recently described in Europe. In addition to the invasion of Aedes albopictus, several studies have focused on monitoring and controlling other invasive Aedes species, as Aedes koreicus and Aedes japonicus. Considering the increasing development of insecticide resistance in Aedes mosquitoes, new control strategies, including the use of bacterial host symbionts, are proposed. However, little is known about the bacterial communities associated with these species, thus the identification of possible candidates for Symbiotic Control is currently limited. The characterization of the natural microbiota of field-collected Ae. koreicus mosquitoes from North-East Italy through PCR screening, identified native infections of Wolbachia in this species that is also largely colonized by Asaia bacteria. Since Asaia and Wolbachia are proposed as novel tools for Symbiotic Control, our study supports their use for innovative control strategies against new invasive species. Although the presence of Asaia was previously characterized in Ae. koreicus, our study characterized this Wolbachia strain, also inferring its phylogenetic position. The co-presence of Wolbachia and Asaia may provide additional information about microbial competition in mosquito, and to select suitable phenotypes for the suppression of pathogen transmission and for the manipulation of host reproduction in Ae. koreicus.

11.
Environ Sci Pollut Res Int ; 28(41): 57798-57806, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34097216

ABSTRACT

Baru (Dipteryx alata Vogel) is a native tree plant, widely distributed in Brazil, and has a growth and development in acidic soils like Cerrado, indicating a probable tolerance to adverse soil conditions, such as the high concentration of metals and the acidic pH. Due to the lack of information about the tolerance of this species to metals and the possibility of being used in the recovery of degraded areas and/or in phytoremediation, this work was developed with the objective of evaluating the in vitro germination and growth capacity of baru in medium supplemented with different concentrations of aluminum, iron, and manganese, as well as through chemical analysis, to determine the concentration of metals accumulated in cultivated plants in these conditions. The treatments consisted in different concentrations of metals: aluminum, Al3+ (0, 3.5, 7.0, 10.5, 21.0, or 42.0 mg L-1); iron, Fe3+ (0, 2.5, 4.9, 7.4, 14.7, or 29.4 mg L-1); and manganese, Mn2+ (0, 0.4, 0.8, 1.2, 2.4, or 4.8 mg L-1) added to the medium WPM. The tested values were based on using the lower concentration as the limit value, calculated based on risk to human health in accordance with CONAMA resolution 420/2009 for groundwater. At 60 days of cultivation, the percentage of germination, the average number of leaves, the length of the main root and the aerial part, the fresh and dry mass of the aerial part and the root system and the cations concentration Al3+, Fe3+ and Mn2+ in the plant biomass, were evaluated. The results showed that under the conditions in which the experiment was conducted, germination and in vitro growth of baru were not affected by the presence in high concentrations of any of the evaluated metals, with no differences in the percentage of germination and plant growth, as well as typical toxicity characteristics were not observed, such as changes in root morphology, chlorosis, or tissue oxidation. The absence of toxicity symptoms in baru plants, in the presence of Al3+, Fe3+, and Mn2+, indicate that the species is tolerant to these metals. The accumulation of Al3+ and Fe3+ in the plant biomass at the beginning of growth, simultaneously with the increase in the concentrations of these elements in the culture medium, indicates that this species can be used for phytoremediation, because it is a probable accumulator of these elements throughout its development, given the presence in significant concentrations of these elements also in the seeds.


Subject(s)
Dipteryx , Soil Pollutants , Biodegradation, Environmental , Humans , Metals , Soil , Soil Pollutants/analysis
12.
mBio ; 12(2)2021 03 30.
Article in English | MEDLINE | ID: mdl-33785632

ABSTRACT

The mosquito microbiota is composed of several lineages of microorganisms whose ecological roles and evolutionary histories have yet to be investigated in depth. Among these microorganisms, Asaia bacteria play a prominent role, given their abundance in the gut, reproductive organs, and salivary glands of different mosquito species, while their presence has also been reported in several other insects. Notably, Asaia has great potential as a tool for the control of mosquito-borne diseases. Here, we present a wide phylogenomic analysis of Asaia strains isolated from different species of mosquito vectors and from different populations of the Mediterranean fruit fly (medfly), Ceratitis capitata, an insect pest of worldwide economic importance. We show that phylogenetically distant lineages of Asaia experienced independent genome reductions, despite following a common pattern, characterized by the early loss of genes involved in genome stability. This result highlights the role of specific metabolic pathways in the symbiotic relationship between Asaia and the insect host. Finally, we discovered that all but one of the Asaia strains included in the study possess the pyrethroid hydrolase gene. Phylogenetic analysis revealed that this gene is ancestral in Asaia, strongly suggesting that it played a role in the establishment of the symbiotic association between these bacteria and the mosquito hosts. We propose that this gene from the symbiont contributed to initial pyrethroid resistance in insects harboring Asaia, also considering the widespread production of pyrethrins by several plants.IMPORTANCE We have studied genome reduction within several strains of the insect symbiont Asaia isolated from different species/strains of mosquito and medfly. Phylogenetically distant strains of Asaia, despite following a common pattern involving the loss of genes related to genome stability, have undergone independent genome reductions, highlighting the peculiar role of specific metabolic pathways in the symbiotic relationship between Asaia and its host. We also show that the pyrethroid hydrolase gene is present in all the Asaia strains isolated except for the South American malaria vector Anopheles darlingi, for which resistance to pyrethroids has never been reported, suggesting a possible involvement of Asaia in determining resistance to insecticides.


Subject(s)
Acetobacteraceae/genetics , Bacterial Proteins/metabolism , Ceratitis capitata/microbiology , Culicidae/microbiology , Genome, Bacterial , Phylogeny , Symbiosis , Acetobacteraceae/classification , Acetobacteraceae/isolation & purification , Acetobacteraceae/physiology , Animals , Bacterial Proteins/genetics , Ceratitis capitata/drug effects , Ceratitis capitata/physiology , Culicidae/drug effects , Culicidae/physiology , Evolution, Molecular , Genome Size , Insecticide Resistance , Insecticides/pharmacology , Male , Pyrethrins/pharmacology
13.
Sci Rep ; 10(1): 19253, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33159118

ABSTRACT

This paper explores which traits are correlated with fine-scale (0.25 m2) species persistence patterns in the herb layer of old-growth forests. Four old-growth beech forests representing different climatic contexts (presence or absence of summer drought period) were selected along a north-south gradient in Italy. Eight surveys were conducted in each of the sites during the period spanning 1999-2011. We found that fine-scale species persistence was correlated with different sets of plant functional traits, depending on local ecological context. Seed mass was found to be as important for the fine-scale species persistence in the northern sites, while clonal and bud-bank traits were markedly correlated with the southern sites characterised by summer drought. Leaf traits appeared to correlate with species persistence in the drier and wetter sites. However, we found that different attributes, i.e. helomorphic vs scleromorphic leaves, were correlated to species persistence in the northernmost and southernmost sites, respectively. These differences appear to be dependent on local trait adaptation rather than plant phylogenetic history. Our findings suggest that the persistent species in the old-growth forests might adopt an acquisitive resource-use strategy (i.e. helomorphic leaves with high SLA) with higher seed mass in sites without summer drought, while under water-stressed conditions persistent species have a conservative resource-use strategy (i.e. scleromorphic leaves with low SLA) with an increased importance of clonal and resprouting ability.


Subject(s)
Fagus/genetics , Forests , Plant Leaves/genetics , Quantitative Trait, Heritable , Seeds/genetics
14.
Pathogens ; 9(5)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429180

ABSTRACT

Mosquitoes can transmit many infectious diseases, such as malaria, dengue, Zika, yellow fever, and lymphatic filariasis. Current mosquito control strategies are failing to reduce the severity of outbreaks that still cause high human morbidity and mortality worldwide. Great expectations have been placed on genetic control methods. Among other methods, genetic modification of the bacteria colonizing different mosquito species and expressing anti-pathogen molecules may represent an innovative tool to combat mosquito-borne diseases. Nevertheless, this emerging approach, known as paratransgenesis, requires a detailed understanding of the mosquito microbiota and an accurate characterization of selected bacteria candidates. The acetic acid bacteria Asaia is a promising candidate for paratransgenic approaches. We have previously reported that Asaia symbionts play a beneficial role in the normal development of Anopheles mosquito larvae, but no study has yet investigated the role(s) of Asaia in adult mosquito biology. Here we report evidence on how treatment with a highly specific anti-Asaia monoclonal antibody impacts the survival and physiology of adult Anopheles stephensi mosquitoes. Our findings offer useful insight on the role of Asaia in several physiological systems of adult mosquitoes, where the influence differs between males and females.

15.
Commun Biol ; 3(1): 105, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144396

ABSTRACT

Wolbachia can reduce the capability of mosquitoes to transmit infectious diseases to humans and is currently exploited in campaigns for the control of arboviruses, like dengue and Zika. Under the assumption that Wolbachia-mediated activation of insect immunity plays a role in the reduction of mosquito vectorial capacity, we focused our attention on the Wolbachia surface protein (WSP), a potential inductor of innate immunity. We hypothesized that the heterologous expression of this protein in gut- and tissue-associated symbionts may reduce parasite transmission. We thus engineered the mosquito bacterial symbiont Asaia to express WSP (AsaiaWSP). AsaiaWSP induced activation of the host immune response in Aedes aegypti and Anopheles stephensi mosquitoes, and inhibited the development of the heartworm parasite Dirofilaria immitis in Ae. aegypti. These results consolidate previous evidence on the immune-stimulating property of WSP and make AsaiaWSP worth of further investigations as a potential tool for the control of mosquito-borne diseases.


Subject(s)
Acetobacteraceae/metabolism , Aedes/microbiology , Anopheles/microbiology , Bacterial Outer Membrane Proteins/metabolism , Dirofilaria immitis/microbiology , Membrane Proteins/metabolism , Wolbachia/metabolism , Acetobacteraceae/genetics , Aedes/immunology , Animals , Anopheles/parasitology , Bacterial Outer Membrane Proteins/genetics , Dirofilaria immitis/growth & development , Host-Parasite Interactions , Membrane Proteins/genetics , Phagocytosis , Symbiosis , Wolbachia/genetics
16.
Front Genet ; 10: 836, 2019.
Article in English | MEDLINE | ID: mdl-31608103

ABSTRACT

In mosquitoes, the discovery of the numerous interactions between components of the microbiota and the host immune response opens up the attractive possibility of the development of novel control strategies against mosquito borne diseases. We have focused our attention to Asaia, a symbiont of several mosquito vectors who has been proposed as one of the most potential tool for paratransgenic applications; although being extensively characterized, its interactions with the mosquito immune system has never been investigated. Here we report a study aimed at describing the interactions between Asaia and the immune system of two vectors of malaria, Anophelesstephensi and An. gambiae. The introduction of Asaia isolates induced the activation of the basal level of mosquito immunity and lower the development of malaria parasite in An. stephensi. These findings confirm and expand the potential of Asaia in mosquito borne diseases control, not only through paratransgenesis, but also as a natural effector for mosquito immune priming.

17.
Genome Biol Evol ; 11(1): 1-10, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30476071

ABSTRACT

Symbiosis is now recognized as a driving force in evolution, a role that finds its ultimate expression in the variety of associations bonding insects with microbial symbionts. These associations have contributed to the evolutionary success of insects, with the hosts acquiring the capacity to exploit novel ecological niches, and the symbionts passing from facultative associations to obligate, mutualistic symbioses. In bacterial symbiont of insects, the transition from the free-living life style to mutualistic symbiosis often resulted in a reduction in the genome size, with the generation of the smallest bacterial genomes thus far described. Here, we show that the process of genome reduction is still occurring in Asaia, a group of bacterial symbionts associated with a variety of insects. Indeed, comparative genomics of Asaia isolated from different mosquito species revealed a substantial genome size and gene content reduction in Asaia from Anopheles darlingi, a South-American malaria vector. We thus propose Asaia as a novel model to study genome reduction dynamics, within a single bacterial taxon, evolving in a common biological niche.


Subject(s)
Acetobacteraceae/genetics , Culicidae/microbiology , Genome Size , Genome, Bacterial , Animals , Female , Symbiosis
18.
Parasit Vectors ; 11(1): 217, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29587832

ABSTRACT

BACKGROUND: The outbreaks of bluetongue and Schmallenberg disease in Europe have increased efforts to understand the ecology of Culicoides biting midges and their role in pathogen transmission. However, most studies have focused on a specific habitat, region, or country. To facilitate wider comparisons, and to obtain a better understanding of the spread of disease through Europe, the present study focused on monitoring biting midge species diversity in three different habitat types and three countries across Europe. METHODS: Biting midges were trapped using Onderstepoort Veterinary Institute light traps at a total of 27 locations in Sweden, the Netherlands and Italy, comprising farm, peri-urban and wetland habitats. From July 2014 to June 2015 all locations were sampled monthly, except for during the winter months. Trapped midges were counted and identified morphologically. Indices on species richness, evenness and diversity were calculated. Community compositions were analysed using non-metric multidimensional scaling (NMDS) techniques. RESULTS: A total of 50,085 female midges were trapped during 442 collection nights. More than 88% of these belonged to the Obsoletus group. The highest midge diversity was found in Sweden, while species richness was highest in the Netherlands, and most specimens were trapped in Italy. For habitats within countries, diversity of the trapped midges was lowest for farms in all countries. Differences in biting midge species communities were more distinct across the three countries than the three habitat types. CONCLUSIONS: A core midge community could be identified, in which the Obsoletus group was the most abundant. Variations in vector communities across countries imply different patterns of disease spread throughout Europe. How specific species and their associated communities affect disease risk is still unclear. Our results emphasize the importance of midge diversity data at community level, how this differs across large geographic range within Europe, and its implications on assessing risks of midge-borne disease outbreaks.


Subject(s)
Biodiversity , Ceratopogonidae/classification , Ceratopogonidae/growth & development , Insect Vectors/classification , Insect Vectors/growth & development , Animals , Ceratopogonidae/anatomy & histology , Ecosystem , Entomology , Female , Insect Vectors/anatomy & histology , Italy , Microscopy , Netherlands , Sweden
19.
Parasit Vectors ; 10(1): 510, 2017 Oct 23.
Article in English | MEDLINE | ID: mdl-29061177

ABSTRACT

BACKGROUND: Studies on mosquito species diversity in Europe often focus on a specific habitat, region or country. Moreover, different trap types are used for these sampling studies, making it difficult to compare and validate results across Europe. To facilitate comparisons of trapping sites and community analysis, the present study used two trap types for monitoring mosquito species diversity in three habitat types for three different countries in Europe. METHODS: Mosquitoes were trapped using Biogents Sentinel (BGS), and Mosquito Magnet Liberty Plus (MMLP) traps at a total of 27 locations in Sweden, the Netherlands and Italy, comprising farm, peri-urban and wetland habitats. From July 2014 to June 2015 all locations were sampled monthly, except for the winter months. Indices of species richness, evenness and diversity were calculated, and community analyses were carried out with non-metric multidimensional scaling (NMDS) techniques. RESULTS: A total of 11,745 female mosquitoes were trapped during 887 collections. More than 90% of the mosquitoes belonged to the genera Culex and Aedes, with Culex pipiens being the most abundant species. The highest mosquito diversity was found in Sweden. Within Sweden, species diversity was highest in wetland habitats, whereas in the Netherlands and Italy this was highest at farms. The NMDS analyses showed clear differences in mosquito communities among countries, but not among habitat types. The MMLP trapped a higher diversity of mosquito species than the BGS traps. Also, MMLP traps trapped higher numbers of mosquitoes, except for the genera Culex and Culiseta in Italy. CONCLUSIONS: A core mosquito community could be identified for the three countries, with Culex pipiens as the most abundant species. Differences in mosquito species communities were more defined by the three countries included in the study than by the three habitat types. Differences in mosquito community composition across countries may have implications for disease emergence and further spread throughout Europe. Future research should, therefore, focus on how field data of vector communities can be incorporated into models, to better assess the risk of mosquito-borne disease outbreaks.


Subject(s)
Biodiversity , Culicidae , Aedes/anatomy & histology , Aedes/physiology , Animals , Culex/anatomy & histology , Culex/physiology , Culicidae/anatomy & histology , Culicidae/classification , Ecosystem , Europe , Female , Italy , Mosquito Vectors , Netherlands , Seasons , Sweden , Wetlands
20.
PLoS One ; 11(11): e0166131, 2016.
Article in English | MEDLINE | ID: mdl-27832166

ABSTRACT

In germinating seeds under unfavorable environmental conditions, the mobilization of stores in the cotyledons is delayed, which may result in a different modulation of carbohydrates balance and a decrease in seedling vigor. Tall fescue (Festuca arundinacea Schreb.) caryopses grown at 4°C in the dark for an extended period in complete absence of nutrients, showed an unexpected ability to survive. Seedlings grown at 4°C for 210 days were morphologically identical to seedlings grown at 23°C for 21 days. After 400 days, seedlings grown at 4°C were able to differentiate plastids to chloroplast in just few days once transferred to the light and 23°C. Tall fescue exposed to prolonged period at 4°C showed marked anatomical changes: cell wall thickening, undifferentiated plastids, more root hairs and less xylem lignification. Physiological modifications were also observed, in particular related to sugar content, GA and ABA levels and amylolytic enzymes pattern. The phytohormones profiles exhibited at 4 and 23°C were comparable when normalized to the respective physiological states. Both the onset and the completion of germination were linked to GA and ABA levels, as well as to the ratio between these two hormones. All plants showed a sharp decline in carbohydrate content, with a consequent onset of gradual sugar starvation. This explained the slowed then full arrest in growth under both treatment regimes. The analysis of amylolytic activity showed that Ca2+ played a central role in the stabilization of several isoforms. Overall, convergence of starvation and hormone signals meet in crosstalk to regulate germination, growth and development in tall fescue.


Subject(s)
Adaptation, Physiological/physiology , Festuca/physiology , Seedlings/physiology , Stress, Physiological/physiology , Abscisic Acid/metabolism , Adaptation, Physiological/radiation effects , Calcium/metabolism , Carbohydrates/analysis , Cell Wall/metabolism , Cell Wall/physiology , Cold Temperature , Cotyledon/metabolism , Cotyledon/physiology , Darkness , Festuca/metabolism , Gibberellins/metabolism , Light , Lignin/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Roots/physiology , Time Factors , alpha-Amylases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL