Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biochem Soc Trans ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716888

ABSTRACT

In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.

2.
Cell Rep ; 43(5): 114152, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38669140

ABSTRACT

Activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome complex is an essential innate immune signaling mechanism. To reveal how human NLRP3 inflammasome assembly and activation are controlled, in particular by components of the ubiquitin system, proximity labeling, affinity purification, and RNAi screening approaches were performed. Our study provides an intricate time-resolved molecular map of different phases of NLRP3 inflammasome activation. Also, we show that ubiquitin C-terminal hydrolase 1 (UCH-L1) interacts with the NACHT domain of NLRP3. Downregulation of UCH-L1 decreases pro-interleukin-1ß (IL-1ß) levels. UCH-L1 chemical inhibition with small molecules interfered with NLRP3 puncta formation and ASC oligomerization, leading to altered IL-1ß cleavage and secretion, particularly in microglia cells, which exhibited elevated UCH-L1 expression as compared to monocytes/macrophages. Altogether, we profiled NLRP3 inflammasome activation dynamics and highlight UCH-L1 as an important modulator of NLRP3-mediated IL-1ß production, suggesting that a pharmacological inhibitor of UCH-L1 may decrease inflammation-associated pathologies.

3.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38453365

ABSTRACT

KRAS is a proto-oncogene encoding a small GTPase. Mutations contribute to ∼30% of human solid tumours, including lung adenocarcinoma, pancreatic, and colorectal carcinomas. Most KRAS activating mutations interfere with GTP hydrolysis, essential for its role as a molecular switch, leading to alterations in their molecular environment and oncogenic signalling. However, the precise signalling cascades these mutations affect are poorly understood. Here, APEX2 proximity labelling was used to profile the molecular environment of WT, G12D, G13D, and Q61H-activating KRAS mutants under starvation and stimulation conditions. Through quantitative proteomics, we demonstrate the presence of known KRAS interactors, including ARAF and LZTR1, which are differentially captured by WT and KRAS mutants. Notably, the KRAS mutations G12D, G13D, and Q61H abrogate their association with LZTR1, thereby affecting turnover. Elucidating the implications of LZTR1-mediated regulation of KRAS protein levels in cancer may offer insights into therapeutic strategies targeting KRAS-driven malignancies.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/genetics , Mutation , Ubiquitin-Protein Ligases , Cullin Proteins/genetics , Transcription Factors
4.
Cell Death Dis ; 14(3): 231, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37002195

ABSTRACT

The ubiquitin proteasomal system is a critical regulator of muscle physiology, and impaired UPS is key in many muscle pathologies. Yet, little is known about the function of deubiquitinating enzymes (DUBs) in the muscle cell context. We performed a genetic screen to identify DUBs as potential regulators of muscle cell differentiation. Surprisingly, we observed that the depletion of ubiquitin-specific protease 18 (USP18) affected the differentiation of muscle cells. USP18 depletion first stimulated differentiation initiation. Later, during differentiation, the absence of USP18 expression abrogated myotube maintenance. USP18 enzymatic function typically attenuates the immune response by removing interferon-stimulated gene 15 (ISG15) from protein substrates. However, in muscle cells, we found that USP18, predominantly nuclear, regulates differentiation independent of ISG15 and the ISG response. Exploring the pattern of RNA expression profiles and protein networks whose levels depend on USP18 expression, we found that differentiation initiation was concomitant with reduced expression of the cell-cycle gene network and altered expression of myogenic transcription (co) factors. We show that USP18 depletion altered the calcium channel gene network, resulting in reduced calcium flux in myotubes. Additionally, we show that reduced expression of sarcomeric proteins in the USP18 proteome was consistent with reduced contractile force in an engineered muscle model. Our results revealed nuclear USP18 as a critical regulator of differentiation initiation and maintenance, independent of ISG15 and its role in the ISG response.


Subject(s)
Cytokines , Ubiquitins , Cytokines/metabolism , Ubiquitins/metabolism , Interferons , Cell Differentiation/genetics , Muscles/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
5.
Nat Immunol ; 22(11): 1416-1427, 2021 11.
Article in English | MEDLINE | ID: mdl-34663977

ABSTRACT

Ubiquitin-like protein ISG15 (interferon-stimulated gene 15) (ISG15) is a ubiquitin-like modifier induced during infections and involved in host defense mechanisms. Not surprisingly, many viruses encode deISGylating activities to antagonize its effect. Here we show that infection by Zika, SARS-CoV-2 and influenza viruses induce ISG15-modifying enzymes. While influenza and Zika viruses induce ISGylation, SARS-CoV-2 triggers deISGylation instead to generate free ISG15. The ratio of free versus conjugated ISG15 driven by the papain-like protease (PLpro) enzyme of SARS-CoV-2 correlates with macrophage polarization toward a pro-inflammatory phenotype and attenuated antigen presentation. In vitro characterization of purified wild-type and mutant PLpro revealed its strong deISGylating over deubiquitylating activity. Quantitative proteomic analyses of PLpro substrates and secretome from SARS-CoV-2-infected macrophages revealed several glycolytic enzymes previously implicated in the expression of inflammatory genes and pro-inflammatory cytokines, respectively. Collectively, our results indicate that altered free versus conjugated ISG15 dysregulates macrophage responses and probably contributes to the cytokine storms triggered by SARS-CoV-2.


Subject(s)
COVID-19/immunology , Cytokines/metabolism , Inflammation/immunology , Macrophages/immunology , SARS-CoV-2/physiology , Ubiquitins/metabolism , Cell Differentiation , Coronavirus Papain-Like Proteases/metabolism , Cytokines/genetics , Gene Knockdown Techniques , HeLa Cells , Humans , Immune Evasion , Immunity, Innate , Influenza A virus/physiology , Influenza, Human/immunology , Pluripotent Stem Cells/cytology , Ubiquitination , Ubiquitins/genetics , Zika Virus/physiology , Zika Virus Infection/immunology
6.
Elife ; 102021 10 12.
Article in English | MEDLINE | ID: mdl-34636321

ABSTRACT

Lung squamous cell carcinoma (LSCC) is a considerable global health burden, with an incidence of over 600,000 cases per year. Treatment options are limited, and patient's 5-year survival rate is less than 5%. The ubiquitin-specific protease 28 (USP28) has been implicated in tumourigenesis through its stabilization of the oncoproteins c-MYC, c-JUN, and Δp63. Here, we show that genetic inactivation of Usp28-induced regression of established murine LSCC lung tumours. We developed a small molecule that inhibits USP28 activity in the low nanomole range. While displaying cross-reactivity against the closest homologue USP25, this inhibitor showed a high degree of selectivity over other deubiquitinases. USP28 inhibitor treatment resulted in a dramatic decrease in c-MYC, c-JUN, and Δp63 proteins levels and consequently induced substantial regression of autochthonous murine LSCC tumours and human LSCC xenografts, thereby phenocopying the effect observed by genetic deletion. Thus, USP28 may represent a promising therapeutic target for the treatment of squamous cell lung carcinoma.


Subject(s)
DNA-Binding Proteins/genetics , Gene Deletion , Lung Neoplasms/genetics , Neoplasms, Squamous Cell/genetics , Transcription Factors/genetics , Ubiquitin Thiolesterase/genetics , Animals , DNA-Binding Proteins/metabolism , Disease Models, Animal , Humans , Mice , Transcription Factors/metabolism , Ubiquitin Thiolesterase/metabolism
7.
Cell Commun Signal ; 19(1): 23, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627128

ABSTRACT

Controlling the activation of the NLRP3 inflammasome by post-translational modifications (PTMs) of critical protein subunits has emerged as a key determinant in inflammatory processes as well as in pathophysiology. In this review, we put into context the kinases, ubiquitin processing and other PTM enzymes that modify NLRP3, ASC/PYCARD and caspase-1, leading to inflammasome regulation, activation and signal termination. Potential target therapeutic entry points for a number of inflammatory diseases focussed on PTM enzyme readers, writers and erasers, leading to the regulation of inflammasome function, are discussed. Video Abstract.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Processing, Post-Translational , Animals , Humans
8.
Br J Cancer ; 124(4): 817-830, 2021 02.
Article in English | MEDLINE | ID: mdl-33214684

ABSTRACT

BACKGROUND: Interferon (IFN) signalling pathways, a key element of the innate immune response, contribute to resistance to conventional chemotherapy, radiotherapy, and immunotherapy, and are often deregulated in cancer. The deubiquitylating enzyme USP18 is a major negative regulator of the IFN signalling cascade and is the predominant human protease that cleaves ISG15, a ubiquitin-like protein tightly regulated in the context of innate immunity, from its modified substrate proteins in vivo. METHODS: In this study, using advanced proteomic techniques, we have significantly expanded the USP18-dependent ISGylome and proteome in a chronic myeloid leukaemia (CML)-derived cell line. USP18-dependent effects were explored further in CML and colorectal carcinoma cellular models. RESULTS: Novel ISGylation targets were characterised that modulate the sensing of innate ligands, antigen presentation and secretion of cytokines. Consequently, CML USP18-deficient cells are more antigenic, driving increased activation of cytotoxic T lymphocytes (CTLs) and are more susceptible to irradiation. CONCLUSIONS: Our results provide strong evidence for USP18 in regulating antigenicity and radiosensitivity, highlighting its potential as a cancer target.


Subject(s)
Colorectal Neoplasms/enzymology , Colorectal Neoplasms/immunology , Cytokines/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Ubiquitin Thiolesterase/metabolism , Ubiquitins/metabolism , Antigenic Variation , Cell Line, Tumor , Colorectal Neoplasms/radiotherapy , Gene Knockout Techniques , HCT116 Cells , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/radiotherapy , Radiation Tolerance/genetics , Radiation Tolerance/immunology , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/genetics
9.
PLoS Pathog ; 16(10): e1008784, 2020 10.
Article in English | MEDLINE | ID: mdl-33108402

ABSTRACT

Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. 2 E1 ubiquitin-activating (E1), 13 E2 ubiquitin-conjugating (E2), 79 E3 ubiquitin ligase (E3) and 20 deubiquitinating cysteine peptidase (DUB) genes can be identified in the Leishmania mexicana genome but, currently, little is known about the role of E1, E2 and E3 enzymes in this parasite. Bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed numerous loss-of-fitness phenotypes in promastigote to amastigote differentiation and mammalian infection. The E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for the successful transformation from promastigote to amastigote and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Of all ubiquitination enzyme null mutants examined in the screen, Δubc2 and Δuev1 exhibited the most extreme loss-of-fitness during differentiation. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, reveal a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a can load ubiquitin onto UBC2, allowing UBC2-UEV1 to form K63-linked di-ubiquitin chains in vitro. Notably, UBC2 can cooperate in vitro with human E3s RNF8 and BIRC2 to form non-K63-linked polyubiquitin chains, showing that UBC2 can facilitate ubiquitination independent of UEV1, but association of UBC2 with UEV1 inhibits this ability. Our study demonstrates the dual essentiality of UBC2 and UEV1 in the differentiation and intracellular survival of L. mexicana and shows that the interaction between these two proteins is crucial for regulation of their ubiquitination activity and function.


Subject(s)
Leishmania/physiology , Leishmaniasis/parasitology , Transcription Factors/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin/metabolism , Ubiquitination , Amino Acid Sequence , Animals , Female , Humans , Leishmaniasis/metabolism , Leishmaniasis/pathology , Mice , Protein Conformation , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Transcription Factors/genetics , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics
10.
PLoS Pathog ; 16(6): e1008455, 2020 06.
Article in English | MEDLINE | ID: mdl-32544189

ABSTRACT

The parasitic protozoan Leishmania requires proteasomal, autophagic and lysosomal proteolytic pathways to enact the extensive cellular remodelling that occurs during its life cycle. The proteasome is essential for parasite proliferation, yet little is known about the requirement for ubiquitination/deubiquitination processes in growth and differentiation. Activity-based protein profiling of L. mexicana C12, C19 and C65 deubiquitinating cysteine peptidases (DUBs) revealed DUB activity remains relatively constant during differentiation of procyclic promastigote to amastigote. However, when life cycle phenotyping (bar-seq) was performed on a pool including 15 barcoded DUB null mutants created in promastigotes using CRISPR-Cas9, significant loss of fitness was observed during differentiation and intracellular infection. DUBs 4, 7, and 13 are required for successful transformation from metacyclic promastigote to amastigote and DUBs 3, 5, 6, 8, 10, 11 and 14 are required for normal amastigote proliferation in mice. DUBs 1, 2, 12 and 16 are essential for promastigote viability and the essential role of DUB2 in establishing infection was demonstrated using DiCre inducible gene deletion in vitro and in vivo. DUB2 is found in the nucleus and interacts with nuclear proteins associated with transcription/chromatin dynamics, mRNA splicing and mRNA capping. DUB2 has broad linkage specificity, cleaving all the di-ubiquitin chains except for Lys27 and Met1. Our study demonstrates the crucial role that DUBs play in differentiation and intracellular survival of Leishmania and that amastigotes are exquisitely sensitive to disruption of ubiquitination homeostasis.


Subject(s)
Cell Cycle , Deubiquitinating Enzymes/metabolism , Leishmania mexicana/enzymology , Protozoan Proteins/metabolism , Ubiquitination , Animals , Deubiquitinating Enzymes/genetics , Female , Gene Deletion , Leishmania mexicana/genetics , Mice , Mice, Inbred BALB C , Protozoan Proteins/genetics
11.
Front Chem ; 7: 592, 2019.
Article in English | MEDLINE | ID: mdl-31555637

ABSTRACT

Enzymes that bind and process ubiquitin, a small 76-amino-acid protein, have been recognized as pharmacological targets in oncology, immunological disorders, and neurodegeneration. Mass spectrometry technology has now reached the capacity to cover the proteome with enough depth to interrogate entire biochemical pathways including those that contain DUBs and E3 ligase substrates. We have recently characterized the breast cancer cell (MCF7) deep proteome by detecting and quantifying ~10,000 proteins, and within this data set, we can detect endogenous expression of 65 deubiquitylating enzymes (DUBs), whereas matching transcriptomics detected 78 DUB mRNAs. Since enzyme activity provides another meaningful layer of information in addition to the expression levels, we have combined advanced mass spectrometry technology, pre-fractionation, and more potent/selective ubiquitin active-site probes with propargylic-based electrophiles to profile 74 DUBs including distinguishable isoforms for 5 DUBs in MCF7 crude extract material. Competition experiments with cysteine alkylating agents and pan-DUB inhibitors combined with probe labeling revealed the proportion of active cellular DUBs directly engaged with probes by label-free quantitative (LFQ) mass spectrometry. This demonstrated that USP13, 39, and 40 are non-reactive to probe, indicating restricted enzymatic activity under these cellular conditions. Our extended chemoproteomics workflow increases depth of covering the active DUBome, including isoform-specific resolution, and provides the framework for more comprehensive cell-based small-molecule DUB selectivity profiling.

12.
Philos Trans R Soc Lond B Biol Sci ; 374(1771): 20180025, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30852998

ABSTRACT

From neuroscience, brain imaging and the psychology of memory, we are beginning to assemble an integrated theory of the brain subsystems and pathways that allow the compression, storage and reconstruction of memories for past events and their use in contextualizing the present and reasoning about the future-mental time travel (MTT). Using computational models, embedded in humanoid robots, we are seeking to test the sufficiency of this theoretical account and to evaluate the usefulness of brain-inspired memory systems for social robots. In this contribution, we describe the use of machine learning techniques-Gaussian process latent variable models-to build a multimodal memory system for the iCub humanoid robot and summarize results of the deployment of this system for human-robot interaction. We also outline the further steps required to create a more complete robotic implementation of human-like autobiographical memory and MTT. We propose that generative memory models, such as those that form the core of our robot memory system, can provide a solution to the symbol grounding problem in embodied artificial intelligence. This article is part of the theme issue 'From social brains to social robots: applying neurocognitive insights to human-robot interaction'.


Subject(s)
Cognition , Machine Learning , Memory, Episodic , Robotics , Humans , Models, Theoretical , Social Behavior , Time Factors , Travel
13.
Sci Rep ; 7: 43587, 2017 02 27.
Article in English | MEDLINE | ID: mdl-28240278

ABSTRACT

Catabolism of galactose by Streptococcus pneumoniae alters the microbe's metabolism from homolactic to mixed acid fermentation, and this shift is linked to the microbe's virulence. However, the genetic basis of this switch is unknown. Pyruvate formate lyase (PFL) is a crucial enzyme for mixed acid fermentation. Functional PFL requires the activities of two enzymes: pyruvate formate lyase activating enzyme (coded by pflA) and pyruvate formate lyase (coded by pflB). To understand the genetic basis of mixed acid fermentation, transcriptional regulation of pflA and pflB was studied. By microarray analysis of ΔpflB, differential regulation of several transcriptional regulators were identified, and CcpA, and GlnR's role in active PFL synthesis was studied in detail as these regulators directly interact with the putative promoters of both pflA and pflB, their mutation attenuated pneumococcal growth, and their expression was induced on host-derived sugars, indicating that these regulators have a role in sugar metabolism, and multiple regulators are involved in active PFL synthesis. We also found that the influence of each regulator on pflA and pflB expression was distinct in terms of activation and repression, and environmental condition. These results show that active PFL synthesis is finely tuned, and feed-back inhibition and activation are involved.


Subject(s)
Acetyltransferases/metabolism , Galactose/metabolism , Streptococcus pneumoniae/physiology , Acetyltransferases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Energy Metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Models, Biological , Mutation , Pneumococcal Infections/microbiology , Promoter Regions, Genetic , Protein Binding , Transcriptome , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...