Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 81(1): 115, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436764

ABSTRACT

INTRODUCTION: The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS: To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS: The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION: YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.


Subject(s)
Cell Communication , Liver , YAP-Signaling Proteins , Animals , Mice , Cell Communication/genetics , Endothelial Cells , Hepatocytes , Ligands , Liver/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism
2.
Chem Biol Interact ; 351: 109728, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34717914

ABSTRACT

An in vitro/in silico method that determines the risk of human drug induced liver injury in relation to oral doses and blood concentrations of drugs was recently introduced. This method utilizes information on the maximal blood concentration (Cmax) for a specific dose of a test compound, which can be estimated using physiologically-based pharmacokinetic modelling, and a cytotoxicity test in cultured human hepatocytes. In the present study, we analyzed if the addition of an assay that measures the inhibition of bile acid export carriers, like BSEP and/or MRP2, to the existing method improves the differentiation of hepatotoxic and non-hepatotoxic compounds. Therefore, an export assay for 5-chloromethylfluorescein diacetate (CMFDA) was established. We tested 36 compounds in a concentration-dependent manner for which the risk of hepatotoxicity for specific oral doses and the capacity to inhibit hepatocyte export carriers are known. Compared to the CTB cytotoxicity test, substantially lower EC10 values were obtained using the CMFDA assay for several known BSEP and/or MRP2 inhibitors. To quantify if the addition of the CMFDA assay to our test system improves the overall separation of hepatotoxic from non-hepatotoxic compounds, the toxicity separation index (TSI) was calculated. We obtained a better TSI using the lower alert concentration from either the CMFDA or the CTB test (TSI: 0.886) compared to considering the CTB test alone (TSI: 0.775). In conclusion, the data show that integration of the CMFDA assay with an in vitro test battery improves the differentiation of hepatotoxic and non-hepatotoxic compounds in a set of compounds that includes bile acid export carrier inhibitors.


Subject(s)
Cytotoxins/toxicity , Hepatocytes/drug effects , Toxicity Tests/methods , ATP Binding Cassette Transporter, Subfamily B, Member 11/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Cell Culture Techniques/methods , Cells, Cultured , Chemical and Drug Induced Liver Injury , Fluoresceins/metabolism , Humans , Mitochondria/drug effects , Multidrug Resistance-Associated Protein 2/antagonists & inhibitors , Multidrug Resistance-Associated Protein 2/metabolism
3.
Hepatology ; 73(4): 1531-1550, 2021 04.
Article in English | MEDLINE | ID: mdl-32558958

ABSTRACT

BACKGROUND AND AIMS: Small-molecule flux in tissue microdomains is essential for organ function, but knowledge of this process is scant due to the lack of suitable methods. We developed two independent techniques that allow the quantification of advection (flow) and diffusion in individual bile canaliculi and in interlobular bile ducts of intact livers in living mice, namely fluorescence loss after photoactivation and intravital arbitrary region image correlation spectroscopy. APPROACH AND RESULTS: The results challenge the prevailing "mechano-osmotic" theory of canalicular bile flow. After active transport across hepatocyte membranes, bile acids are transported in the canaliculi primarily by diffusion. Only in the interlobular ducts is diffusion augmented by regulatable advection. Photoactivation of fluorescein bis-(5-carboxymethoxy-2-nitrobenzyl)-ether in entire lobules demonstrated the establishment of diffusive gradients in the bile canalicular network and the sink function of interlobular ducts. In contrast to the bile canalicular network, vectorial transport was detected and quantified in the mesh of interlobular bile ducts. CONCLUSIONS: The liver consists of a diffusion-dominated canalicular domain, where hepatocytes secrete small molecules and generate a concentration gradient and a flow-augmented ductular domain, where regulated water influx creates unidirectional advection that augments the diffusive flux.


Subject(s)
Bile Canaliculi/diagnostic imaging , Bile Canaliculi/metabolism , Biological Transport, Active/physiology , Intravital Microscopy/methods , Portal Vein/diagnostic imaging , Portal Vein/metabolism , Animals , Bile/metabolism , Bile Acids and Salts/metabolism , Cell Membrane/metabolism , Computer Simulation , Fluorescent Dyes/administration & dosage , Hepatocytes/metabolism , Injections, Intravenous/methods , Mice , Mice, Inbred C57BL , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods
4.
Methods Mol Biol ; 1981: 25-53, 2019.
Article in English | MEDLINE | ID: mdl-31016646

ABSTRACT

Cholestasis, the impairment of bile flux out of the liver, is a common complication of many pathological liver disorders, such as cholangiopathies, primary biliary sclerosis, and primary biliary cirrhosis. Besides accumulation of bile acids in the liver and blood, it leads to a proliferative response of the biliary tree termed as a ductular reaction. The ductular reaction is characterized by enhanced proliferation of cholangiocytes, which form the epithelial lining of bile ducts. This strong reaction of the biliary tree has been reported to generate a source of progenitor cells that can differentiate to hepatocytes or cholangiocytes during regeneration. On the other hand, it can cause periportal fibrosis eventually progressing to cirrhosis and death. In 2D histology, this leads to the appearance of an increased number of duct lumina per area of tissue. Yet, the biliary tree is a 3D vstructure and the appearance of lumina in thin slices may be explained by the appearance of novel ducts or by ramification or convolution of existing ducts in 3D. In many such aspects, traditional 2D histology on thin slices limits our understanding of the response of the biliary tree. A comprehensive understanding of architecture remodeling of the biliary network in cholestasis depends on robust 3D sample preparation and analysis methods. To that end, we describe pipe-3D, a processing and analysis pipeline visualization based on immunofluorescence, confocal imaging, surface reconstructions, and automated morphometry of the biliary network in 3D at subcellular resolution. This pipeline has been used to discover extensive remodeling of interlobular bile ducts in cholestasis, wherein elongation, branching, and looping create a dense ductular mesh around the portal vein branch. Surface reconstructions generated by Pipe-3D from confocal data also show an approximately fivefold enhancement of the luminal duct surface through corrugation of the epithelial lamina, which may increase bile reabsorption and alleviate cholestasis. The response of interlobular ducts in cholestasis was shown to be in sharp contrast to that of large bile ducts, de novo duct formation during embryogenesis. It is also distinct from ductular response in other models of hepatic injury such as choline-deficient, ethionine-supplemented diet, where parenchymal tissue invasion by ducts and their branches is observed. Pipe-3D is applicable to any model of liver injury, and optionally integrates tissue clearing techniques for 3D analysis of thick (>500 µm) tissue sections.


Subject(s)
Bile Ducts/metabolism , Cholestasis/metabolism , Fluorescent Antibody Technique/methods , Alanine Transaminase/metabolism , Aspartate Aminotransferases/metabolism , Microscopy, Confocal
6.
Nat Commun ; 9(1): 887, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29491397

ABSTRACT

Dynamic polarisation of tumour cells is essential for metastasis. While the role of polarisation during dedifferentiation and migration is well established, polarisation of metastasising tumour cells during phases of detachment has not been investigated. Here we identify and characterise a type of polarisation maintained by single cells in liquid phase termed single-cell (sc) polarity and investigate its role during metastasis. We demonstrate that sc polarity is an inherent feature of cells from different tumour entities that is observed in circulating tumour cells in patients. Functionally, we propose that the sc pole is directly involved in early attachment, thereby affecting adhesion, transmigration and metastasis. In vivo, the metastatic capacity of cell lines correlates with the extent of sc polarisation. By manipulating sc polarity regulators and by generic depolarisation, we show that sc polarity prior to migration affects transmigration and metastasis in vitro and in vivo.


Subject(s)
Cell Polarity , Neoplasm Metastasis/physiopathology , Neoplasms/physiopathology , Animals , Cell Line, Tumor , Cell Movement , Female , Humans , Mice, Inbred C57BL , Neoplasm Metastasis/pathology , Neoplasms/pathology , Neoplastic Cells, Circulating/pathology
7.
Hepatology ; 63(3): 951-64, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26610202

ABSTRACT

UNLABELLED: Cholestasis is a common complication in liver diseases that triggers a proliferative response of the biliary tree. Bile duct ligation (BDL) is a frequently used model of cholestasis in rodents. To determine which changes occur in the three-dimensional (3D) architecture of the interlobular bile duct during cholestasis, we used 3D confocal imaging, surface reconstructions, and automated image quantification covering a period up to 28 days after BDL. We show a highly reproducible sequence of interlobular duct remodeling, where cholangiocyte proliferation initially causes corrugation of the luminal duct surface, leading to an approximately five-fold increase in surface area. This is analogous to the function of villi in the intestine or sulci in the brain, where an expansion of area is achieved within a restricted volume. The increase in surface area is further enhanced by duct branching, branch elongation, and loop formation through self-joining, whereby an initially relatively sparse mesh surrounding the portal vein becomes five-fold denser through elongation, corrugation, and ramification. The number of connections between the bile duct and the lobular bile canalicular network by the canals of Hering decreases proportionally to the increase in bile duct length, suggesting that no novel connections are established. The diameter of the interlobular bile duct remains constant after BDL, a response that is qualitatively distinct from that of large bile ducts, which tend to enlarge their diameters. Therefore, volume enhancement is only due to net elongation of the ducts. Because curvature and tortuosity of the bile duct are unaltered, this enlargement of the biliary tree is caused by branching and not by convolution. CONCLUSION: BDL causes adaptive remodeling that aims at optimizing the intraluminal surface area by way of corrugation and branching.


Subject(s)
Bile Ducts/physiopathology , Cholestasis/physiopathology , Animals , Bile Ducts/pathology , Cholestasis/pathology , Disease Models, Animal , Ligation , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL