Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Front Endocrinol (Lausanne) ; 14: 1251351, 2024.
Article in English | MEDLINE | ID: mdl-38390373

ABSTRACT

Introduction: During thermogenesis, adipose tissue (AT) becomes more active and enhances oxidative metabolism. The promotion of this process in white AT (WAT) is called "browning" and, together with the brown AT (BAT) activation, is considered as a promising approach to counteract obesity and metabolic diseases. Transient receptor potential cation channel, subfamily M, member 2 (TRPM2), is an ion channel that allows extracellular Ca2+ influx into the cytosol, and is gated by adenosine diphosphate ribose (ADPR), produced from NAD+ degradation. The aim of this study was to investigate the relevance of TRPM2 in the regulation of energy metabolism in BAT, WAT, and liver during thermogenesis. Methods: Wild type (WT) and Trpm2-/- mice were exposed to 6°C and BAT, WAT and liver were collected to evaluate mRNA, protein levels and ADPR content. Furthermore, O2 consumption, CO2 production and energy expenditure were measured in these mice upon thermogenic stimulation. Finally, the effect of the pharmacological inhibition of TRPM2 was assessed in primary adipocytes, evaluating the response upon stimulation with the ß-adrenergic receptor agonist CL316,243. Results: Trpm2-/- mice displayed lower expression of browning markers in AT and lower energy expenditure in response to thermogenic stimulus, compared to WT animals. Trpm2 gene overexpression was observed in WAT, BAT and liver upon cold exposure. In addition, ADPR levels and mono/poly-ADPR hydrolases expression were higher in mice exposed to cold, compared to control mice, likely mediating ADPR generation. Discussion: Our data indicate TRPM2 as a fundamental player in BAT activation and WAT browning. TRPM2 agonists may represent new pharmacological strategies to fight obesity.


Subject(s)
TRPM Cation Channels , Mice , Animals , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics
2.
Drug Dev Res ; 85(1): e22158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349262

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most aggressive malignancies with a high recurrence rate and poor prognosis. Theranostic, combining therapeutic and diagnostic approaches, arises as a successful strategy to improve patient outcomes through personalized medicine. Src is a non-receptor tyrosine kinase (nRTK) whose involvement in GBM has been extensively demonstrated. Our previous research highlighted the effectiveness of the pyrazolo[3,4-d]pyrimidine SI306 and its more soluble prodrug CMP1 as Src inhibitors both in in vitro and in vivo GBM models. In this scenario, we decided to develop a theranostic prodrug of SI306, ProSI-DOTA(68 Ga) 1, which was designed to target GBM cells after hydrolysis and follow-up on the disease's progression and improve the therapy's outcome. First, the corresponding nonradioactive prodrug 2 was tested to evaluate its ADME profile and biological activity. It showed good metabolic stability, no inhibition of CYP3A4, suboptimal aqueous solubility, and slight gastrointestinal and blood-brain barrier passive permeability. Compound 2 exhibited a drastic reduction of cell vitality after 72 h on two different GBM cell lines (GL261 and U87MG). Then, 2 was subjected to complexation with the radionuclide Gallium-68 to give ProSI-DOTA(68 Ga) 1. The cellular uptake of 1 was evaluated on GBM cells, highlighting a slight but significant time-dependent uptake. The data obtained from our preliminary studies reflect the physiochemical properties of 1. The use of an alternative route of administration, such as the intranasal route, could overcome the physiochemical limitations and enhance the pharmacokinetic properties of 1, paving the way for its future development.


Subject(s)
Glioblastoma , Prodrugs , Humans , Precision Medicine , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Blood-Brain Barrier , Cell Line , Prodrugs/pharmacology
3.
Fitoterapia ; 172: 105743, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952761

ABSTRACT

Sarcopoterium spinosum (L.) Spach is a Rosaceae shrub employed in the folk medicine in the Eastern Mediterranean basin. The previous few studies have focused on the S. spinosum roots, while the fruits have been poorly investigated. The present study aims to assess the biological properties of S. spinosum fruits collected in Lebanon and subjected to ethanolic, water or boiling water extraction. The extracts were compared for the phenol and flavonoid contents, and for the in vitro radical scavenging ability. The ethanolic extract (SEE) was selected and characterized by high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS) showing a phenolome rich in tannins (ellagitannins), flavonoids (quercetin derivatives), and triterpenes. The biological activity of SEE was tested on a cellular model of moderate steatosis consisting of lipid-loaded hepatic cells treated with increasing concentrations of SEE (1-25 µg/mL), or with corilagin or quercetin as comparison. In steatotic hepatocytes the SEE was able (i) to ameliorate the hepatosteatosis; (ii) to counteract the excess ROS and lipid peroxidation; (iii) to restore the impaired catalase activity. The results indicate that the ethanolic extract from S. spinosum fruits is endowed with relevant antisteatotic and antioxidant activities and might find application as nutraceutical product.


Subject(s)
Fruit , Rosaceae , Fruit/chemistry , Quercetin , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , Molecular Structure , Polyphenols/pharmacology , Polyphenols/analysis , Oxidative Stress , Antioxidants/pharmacology , Flavonoids , Rosaceae/chemistry , Water , Lipids
4.
Mar Drugs ; 21(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37233500

ABSTRACT

There is a growing interest in using brown algal extracts thanks to the bioactive substances they produce for adaptation to the marine benthic environment. We evaluated the anti-aging and photoprotective properties of two types of extracts (50%-ethanol and DMSO) obtained from different portions, i.e., apices and thalli, of the brown seaweed, Ericaria amentacea. The apices of this alga, which grow and develop reproductive structures during summer when solar radiation is at its peak, were postulated to be rich in antioxidant compounds. We determined the chemical composition and pharmacological effects of their extracts and compared them to the thallus-derived extracts. All the extracts contained polyphenols, flavonoids and antioxidants and showed significant biological activities. The hydroalcoholic apices extracts demonstrated the highest pharmacological potential, likely due to the higher content of meroditerpene molecular species. They blocked toxicity in UV-exposed HaCaT keratinocytes and L929 fibroblasts and abated the oxidative stress and the production of pro-inflammatory cytokines, typically released after sunburns. Furthermore, the extracts showed anti-tyrosinase and anti-hydrolytic skin enzyme activity, counteracting the collagenase and hyaluronidase degrading activities and possibly slowing down the formation of uneven pigmentation and wrinkles in aging skin. In conclusion, the E. amentacea apices derivatives constitute ideal components for counteracting sunburn symptoms and for cosmetic anti-aging lotions.


Subject(s)
Phaeophyceae , Seaweed , Seaweed/chemistry , Polyphenols , Phaeophyceae/chemistry , Flavonoids/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
5.
Environ Sci Pollut Res Int ; 30(10): 26718-26734, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36369443

ABSTRACT

Iron (Fe) is the most important trace element in the ocean, as it is required by phytoplankton for photosynthesis and nitrate assimilation. Iron speciation is important to better understand the biogeochemical cycle and availability of this micronutrient, in particular in the Southern Ocean. Dissolved Fe (dFe) concentration and speciation were determined in 24 coastal subsurface seawater samples collected in the western Ross sea (Antarctica) during the austral summer 2017 as part of the CELEBeR (CDW Effects on glacial mElting and on Bulk of Fe in the Western Ross sea) project. ICP-DRC-MS was used for dFe determination, whereas CLE-AdSV was used to obtain the concentration of complexed and free dFe, of the ligands, and the values of the stability constants of the complexes. Dissolved Fe values ranged from 0.4 to 2.5 nM and conditional stability constant (logK'Fe'L) from 13.0 to 15.0, highlighting the presence of Fe-binding organic complexes of different stabilities. Principal component analysis (PCA) allowed us to point out that Terra Nova Bay and the neighboring area of Aviator and Mariner Glaciers were different in terms of chemical, physical, and biological parameters. A qualitative investigation on the nature of the organic ligands was carried out by HPLC-ESI-MS/MS. Results showed that siderophores represented a heterogeneous class of organic ligands pool.


Subject(s)
Iron , Trace Elements , Antarctic Regions , Tandem Mass Spectrometry , Seawater/chemistry
6.
Antioxidants (Basel) ; 11(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36139852

ABSTRACT

Plants or plant extracts are widely investigated for preventing/counteracting several chronic disorders. The oral route is the most common route for nutraceutical and drug administration. Currently, it is still unclear as to whether and how the pattern of phenolic compounds (PCs) found in the plants as well as their bioactivity could be modified during the gastrointestinal transit. Recent studies have revealed antioxidant and anti-steatotic properties of Thymbra spicata. Here, we investigated the possible loss of phytochemicals that occurs throughout the sequential steps of a simulated in vitro gastrointestinal (GI) digestion of aqueous and ethanolic extracts of aerial parts of T. spicata. Crude, digested, and dialyzed extracts were characterized in terms of their phenolic profile and biological activities. Total contents of carbohydrates, proteins, PCs, flavonoids, and hydroxycinnamic acids were quantified. The changes in the PC profile and in bioactive compounds upon the simulated GI digestion were monitored by HPLC-MS/MS analysis. The antioxidant activity was measured by different spectrophotometric assays, and the antiproliferative potential was assessed by using three representative human cancer cell lines. We observed that the simulated GI digestion reduced the phytochemical contents in both aqueous and ethanolic T. spicata extracts and modified the PC profile. However, T. spicata extracts improved their antioxidant potential after digestion, while a partial reduction in the antiproliferative activity was observed for the ethanolic extract. Therefore, our results could provide a scientific basis for the employment of T. spicata extract as valuable nutraceutical.

7.
Biomol Concepts ; 13(1): 289-297, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35675587

ABSTRACT

The study of the GABAA receptor itself and its pharmacology is of paramount importance for shedding light on the role of this receptor in the central nervous system. Caged compounds have emerged as powerful tools to support research in this field, as they allow to control, in space and time, the release of neurotransmitters enabling, for example, to map receptors' distribution and dynamics. Here we focus on γ-aminobutyric acid (GABA)-caged compounds, particularly on a commercial complex called RuBi-GABA, which has high efficiency of uncaging upon irradiation at visible wavelengths. We characterized, by electrophysiological measurements, the effects of RuBi-GABA on GABAA receptors of rat cerebellar granule cells in vitro. In particular, we evaluated the effects of side products obtained after RuBi-GABA photolysis. For this purpose, we developed a procedure to separate the "RuBi-cage" from GABA after uncaging RuBi-GABA with a laser source; then, we compared electrophysiological measurements acquired with and without administering the RuBi-cage in the perfusing bath. In conclusion, to investigate the role of the "cage" molecules both near and far from the cell soma, we compared experiments performed changing the distance of the uncaging point from the cell.


Subject(s)
Neurons , gamma-Aminobutyric Acid , Animals , Neurons/physiology , Rats , Receptors, GABA-A/physiology , gamma-Aminobutyric Acid/pharmacology
8.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35337072

ABSTRACT

Cystic fibrosis (CF) is a genetic disease affecting the lungs and pancreas and causing progressive damage. CF is caused by mutations abolishing the function of CFTR, a protein whose role is chloride's mobilization in the epithelial cells of various organs. Recently a therapy focused on small molecules has been chosen as a main approach to contrast CF, designing and synthesizing compounds acting as misfolding (correctors) or defective channel gating (potentiators). Multi-drug therapies have been tested with different combinations of the two series of compounds. Previously, we designed and characterized two series of correctors, namely, hybrids, which were conceived including the aminoarylthiazole (AAT) core, merged with the benzodioxole carboxamide moiety featured by VX-809. In this paper, we herein proceeded with molecular modeling studies guiding the design of a new third series of hybrids, featuring structural variations at the thiazole moiety and modifications on position 4. These derivatives were tested in different assays including a YFP functional assay on models F508del-CFTR CFBE41o-cells, alone and in combination with VX-445, and by using electrophysiological techniques on human primary bronchial epithelia to demonstrate their F508del-CFTR corrector ability. This study is aimed (i) at identifying three molecules (9b, 9g, and 9j), useful as novel CFTR correctors with a good efficacy in rescuing the defect of F508del-CFTR; and (ii) at providing useful information to complete the structure-activity study within all the three series of hybrids as possible CFTR correctors, supporting the development of pharmacophore modelling studies, taking into account all the three series of hybrids. Finally, in silico evaluation of the hybrids pharmacokinetic (PK) properties contributed to highlight hybrid developability as drug-like correctors.

9.
Molecules ; 27(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35164175

ABSTRACT

A new formulation of a pomegranate-peel extract (PEm) obtained by PUAE (Pulsed Ultrasound-Assisted Extraction) and titrated in both ellagic acid (EA) and punicalagin is proposed, characterized and then analyzed for potential health properties in mice suffering from the experimental autoimmune encephalomyelitis (EAE). PEm effects were compared to those elicited by a formulation containing EA (EAm). Control and EAE mice were chronically administered EAm and Pem dissolved in the drinking water, starting from the day 10 post-immunization (d.p.i.), with a "therapeutic" protocol to deliver daily 50 mg/kg of EA. Treated EAE mice did not limit their daily access to the beverage, nor did they show changes in body weight, but they displayed a significant amelioration of "in vivo" clinical symptoms. "Ex vivo" histochemical analysis showed that spinal-cord demyelination and inflammation in PEm and EAm-treated EAE mice at 23 ± 1 d.p.i. were comparable to those in the untreated EAE animals, while microglia activation (measured as Ionized Calcium Binding Adaptor 1, Iba1 staining) and astrocytosis (quantified as glial fibrillar acid protein, GFAP immunopositivity) significantly recovered, particularly in the gray matter. EAm and PEm displayed comparable efficiencies in controlling the spinal pathological cellular hallmarks in EAE mice, and this would support their delivery as dietary supplementation in patients suffering from multiple sclerosis (MS).


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/therapy , Plant Extracts/therapeutic use , Pomegranate , Animals , Disease Models, Animal , Ellagic Acid/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Hydrolyzable Tannins/therapeutic use , Mice , Mice, Inbred C57BL , Pomegranate/chemistry
10.
Brain Sci ; 12(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35053827

ABSTRACT

The creatine precursor guanidinoacetate (GAA) was used as a dietary supplement in humans with no adverse events. Nevertheless, it has been suggested that GAA is epileptogenic or toxic to the nervous system. However, increased GAA content in rodents affected by guanidinoacetate methyltransferase (GAMT) deficiency might be responsible for their spared muscle function. Given these conflicting data, and lacking experimental evidence, we investigated whether GAA affected synaptic transmission in brain hippocampal slices. Incubation with 11.5 µM GAA (the highest concentration in the cerebrospinal fluid of GAMT-deficient patients) did not change the postsynaptic compound action potential. Even 1 or 2 mM had no effect, while 4 mM caused a reversible decrease in the potential. Guanidinoacetate increased creatine and phosphocreatine, but not after blocking the creatine transporter (also used by GAA). In an attempt to allow the brain delivery of GAA when there was a creatine transporter deficiency, we synthesized diacetyl guanidinoacetic acid ethyl ester (diacetyl-GAAE), a lipophilic derivative. In brain slices, 0.1 mM did not cause electrophysiological changes and improved tissue viability after blockage of the creatine transporter. However, diacetyl-GAAE did not increase creatine nor phosphocreatine in brain slices after blockage of the creatine transporter. We conclude that: (1) upon acute administration, GAA is neither epileptogenic nor neurotoxic; (2) Diacetyl-GAAE improves tissue viability after blockage of the creatine transporter but not through an increase in creatine or phosphocreatine. Diacetyl-GAAE might give rise to a GAA-phosphoGAA system that vicariates the missing creatine-phosphocreatine system. Our in vitro data show that GAA supplementation may be safe in the short term, and that a lipophilic GAA prodrug may be useful in creatine transporter deficiency.

11.
Drug Chem Toxicol ; 45(2): 919-931, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32628037

ABSTRACT

Zornia latifolia is a plant suspected to possess psychoactive properties and marketed as a marijuana substitute under the name 'maconha brava'. In this study, the effects of fractions obtained from a 2-propanol extract of aerial portions of the plant were determined by multielectrode array (MEA) analyses on cultured networks of rat cortical neurons. Lipophilic (ZL_lipo, mainly containing flavonoid aglycones), and hydrophilic (ZL_hydro, mainly containing flavonoid glycosides) fractions were initially obtained from the raw extract. ZL_lipo significantly inhibited mean firing rate (MFR) and mean bursting rate (MBR) of MEA recordings, while ZL_hydro induced no inhibition. Column chromatography separation of ZL_lipo yielded five fractions (ZL1-ZL5), among which ZL1 induced the strongest MFR and MBR inhibition. NMR and HPLC-MS analyses of ZL1 revealed the prevalence of the common flavonoids genistein (1) and apigenin (2) (in about a 1:1 ratio), and the presence of the rare flavone syzalterin (6,8-dimethylapigenin) (3) as a minor compound. Exposures of MEA to apigenin and genistein standards did not induce the MFR and MBR inhibition observed with ZL1, whereas exposure to syzalterin standard or to a 1:9 mixture syzalterin-genistein induced effects similar to ZL1. These inhibitory effects were comparable to that observed with high-THC hashish, possibly accounting for the plant psychoactive properties. Data indicate that Z. latifolia, currently marketed as a free herbal product, should be subjected to measures of control. In addition, syzalterin showed distinctive pharmacological properties, opening the way to its possible exploitation as a neuroactive drug.


Subject(s)
Cannabis , Flavones , Analgesics/pharmacology , Animals , Flavones/toxicity , Flavonoids/analysis , Neurons , Plant Extracts/chemistry , Plant Extracts/toxicity , Rats
12.
Nanomaterials (Basel) ; 11(12)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34947640

ABSTRACT

In the absence of standard methods for the detection/quantification of nanoplastics (NPs) in environmental samples, commercial nanopolymers are utilized as proxies for toxicity testing and environmental risk assessment. In marine species, a considerable amount of data are now available on the effects of nanopolystyrene (PS-NPs) of different size/surface characteristics. In this work, amino modified PS-NPs (PS-NH2) (50 and 100 nm), purchased from two different companies, were compared in terms of behavior in exposure media and of biological responses, from molecular to organism level, in the model marine bivalve Mytilus. Different PS-NH2 showed distinct agglomeration and surface charge in artificial sea water (ASW) and hemolymph serum (HS). Differences in behavior were largely reflected by the effects on immune function in vitro and in vivo and on early larval development. Stronger effects were generally observed with PS-NH2 of smaller size, showing less agglomeration and higher positive charge in exposure media. Specific molecular interactions with HS components were investigated by the isolation and characterization of the NP-corona proteins. Data obtained in larvae demonstrate interference with the molecular mechanisms of shell biogenesis. Overall, different PS-NH2 can affect the key physiological functions of mussels at environmental concentrations (10 µg/L). However, detailed information on the commercial NPs utilized is required to compare their biological effects among laboratory experiments.

13.
J Exp Clin Cancer Res ; 40(1): 232, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34266450

ABSTRACT

BACKGROUND: Che-1/AATF (Che-1) is an RNA polymerase II binding protein involved in several cellular processes, including proliferation, apoptosis and response to stress. We have recently demonstrated that Che-1 is able to promote cell proliferation by sustaining global histone acetylation in multiple myeloma (MM) cells where it interacts with histone proteins and competes with HDAC class I members for binding. METHODS: Site-directed Mutagenesis was performed to generate a Che-1 mutant (Che-1 3S) lacking three serine residues (Ser316, Ser320 and Ser321) in 308-325 aa region. Western blot experiments were conducted to examine the effect of depletion or over-expression of Che-1 and Che-1 3S mutant on histone acetylation, in different human cancer cell lines. Proliferation assays were assessed to estimate the change in cells number when Che-1 was over-expressed or deleted. Immunoprecipitation assays were performed to evaluate Che-1/histone H3 interaction when Ser316, Ser320 and Ser321 were removed. The involvement of CK2 kinase in Che-1 phosphorylation at these residues was analysed by in vitro kinase, 2D gel electrophoresis assays and mass spectrometry analysis. RESULTS: Here, we confirmed that Che-1 depletion reduces cell proliferation with a concomitant general histone deacetylation in several tumor cell lines. Furthermore, we provided evidence that CK2 protein kinase phosphorylates Che-1 at Ser316, Ser320 and Ser321 and that these modifications are required for Che-1/histone H3 binding. These results improve our understanding onto the mechanisms by which Che-1 regulates histone acetylation and cell proliferation. CONCLUSIONS: Che-1 phosphorylation at Ser316, Ser320 and Ser321 by CK2 promotes the interaction with histone H3 and represents an essential requirement for Che-1 pro-proliferative ability.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Casein Kinase II/metabolism , Repressor Proteins/metabolism , Cell Proliferation/physiology , Humans , Phosphorylation , Transfection
14.
Angew Chem Int Ed Engl ; 60(36): 19897-19904, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34241943

ABSTRACT

The general perception of viruses is that they are small in terms of size and genome, and that they hijack the host machinery to glycosylate their capsid. Giant viruses subvert all these concepts: their particles are not small, and their genome is more complex than that of some bacteria. Regarding glycosylation, this concept has been already challenged by the finding that Chloroviruses have an autonomous glycosylation machinery that produces oligosaccharides similar in size to those of small viruses (6-12 units), albeit different in structure compared to the viral counterparts. We report herein that Mimivirus possesses a glycocalyx made of two different polysaccharides, now challenging the concept that all viruses coat their capsids with oligosaccharides of discrete size. This discovery contradicts the paradigm that such macromolecules are absent in viruses, blurring the boundaries between giant viruses and the cellular world and opening new avenues in the field of viral glycobiology.


Subject(s)
Mimiviridae/metabolism , Polysaccharides/biosynthesis , Glycosylation , Mimiviridae/chemistry , Polysaccharides/chemistry
15.
Biofactors ; 47(1): 126-134, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33469985

ABSTRACT

Intraneuronal accumulation of hyperphosphorylated tau is a pathological hallmark of several neurodegenerative disorders, including Alzheimer's disease. Phosphorylation plays a crucial role in modulating the tau-microtubule interaction and the ability of the protein to aggregate, but despite efforts during the past decades, the real identity of the kynases involved in vivo remains uncertain. Here, for the first time, we demonstrate that the cGMP-dependent protein kinase G (PKG) phosphorylates tau in both in vitro and in vivo models. More intriguingly, we provide evidence that PKG phosphorylates tau at Ser214 but not at Ser202, a condition that could reduce the pathological aggregation of the protein shifting tau from a pro-aggregant to a neuroprotective anti-aggregant conformation.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , tau Proteins/metabolism , Animals , Cells, Cultured , Cyclic GMP/physiology , Male , Mice , Mice, Inbred C57BL , Phosphorylation , Protein Aggregates , Rats, Sprague-Dawley , Serine/metabolism , Threonine/metabolism , tau Proteins/chemistry
16.
Nat Prod Res ; 35(23): 5081-5088, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32538156

ABSTRACT

Four unprecedented acetylenic alcohols, (Z)-non-7-en-5-yn-1,2,4-triol (1), (Z)-non-7-en-5-yn-1,4-diol (2), (Z)-1,2-dihydroxynon-7-en-5-yn-4-one (3), and (Z)-1-hydroxynon-7-en-5-yn-4-one (4) were isolated from the poisonous mushroom Tricholoma pardinum (Agaricales, Basidiomycota), together with the known compounds 1H-indole-3-carbaldehyde (5) and 6-hydroxy-1H-indole-3-carbaldehyde (6). Their structures were determined by NMR and IR spectroscopy, and mass spectrometry. The crude acetone extract of the mushroom showed potent anti-arthropod activity against Tetranychus urticae (Acarinae), a dangerous crop pest.[Figure: see text].


Subject(s)
Agaricales , Tricholoma , Acetylene , Magnetic Resonance Spectroscopy , Mass Spectrometry
17.
Med Chem ; 17(6): 646-657, 2021.
Article in English | MEDLINE | ID: mdl-32141420

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is the autosomal recessive disorder most common in Caucasian populations. It is caused by mutations in the cystic fibrosis transmembrane regulator protein (CFTR). CFTR is predominantly expressed at the apical plasma membranes of the epithelial cells lining several organs, and functions as a cAMP-regulated chloride/bicarbonate channel. To address the underlying causes of cystic fibrosis, two biomolecular activities are required, namely correctors to increase CFTR levels at the cell surface, and potentiators to allow the effective opening of the CFTR channel. OBJECTIVE: In our previous data, we demonstrated that some aminoarylthiazoles (AATs) have peculiar activity acting as correctors and as potentiator-like molecules. Curiously, a compound called 1 has been shown to be markedly active as a potentiator. Now, we have further modified its scaffold at different portions, for the identification of molecules with improved potency and effectiveness on mutant CFTR. METHODS: Starting from this active compound, we synthesized a small library trying to improve the activity as potentiators. To extrapolate the contribution of a particular structural portion to bioactivity, we selectively modified one portion at a time. RESULTS: Our study has provided a structure-activity relationship (SAR) on AATs and led to the identification of some compounds, with a particular ability to act as CFTR potentiators. CONCLUSION: Two compounds 2 and 13 appear to be promising molecules and could be used for the future development of potentiators of the chloride transport defect in cystic fibrosis.


Subject(s)
Chlorides/metabolism , Cystic Fibrosis/metabolism , Thiazoles/chemistry , Thiazoles/pharmacology , Biological Transport/drug effects , Chemistry Techniques, Synthetic , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Evaluation, Preclinical , Structure-Activity Relationship
18.
Eur J Immunol ; 51(1): 206-219, 2021 01.
Article in English | MEDLINE | ID: mdl-32707604

ABSTRACT

Adenosine deaminase 2 deficiency (DADA2) is an autoinflammatory disease characterized by inflammatory vasculopathy, early strokes associated often with hypogammaglobulinemia. Pure red cell aplasia, thrombocytopenia, and neutropenia have been reported. The defect is due to biallelic loss of function of ADA2 gene, coding for a protein known to regulate the catabolism of extracellular adenosine. We therefore investigated immune phenotype and B- and T-cell responses in 14 DADA2 patients to address if ADA2 mutation affects B- and T-cell function. Here, we show a significant decrease in memory B cells, in particular class switch memory, and an expansion of CD21low B cells in DADA2 patients. In vitro stimulated B lymphocytes were able to secrete nonfunctional ADA2 protein, suggesting a cell intrinsic defect resulting in an impairment of B-cell proliferation and differentiation. Moreover, CD4+ and CD8+ T cells were diminished; however, the frequency of circulating T follicular helper cells was significantly increased but they had an impairment in IL-21 production possibly contributing to an impaired B cell help. Our findings suggest that ADA2 mutation could lead to a B-cell intrinsic defect but also to a defective Tfh cell function, which could contribute to the immunodeficient phenotype reported in DADA2 patients.


Subject(s)
Adenosine Deaminase/deficiency , Agammaglobulinemia/immunology , B-Lymphocytes/immunology , Intercellular Signaling Peptides and Proteins/deficiency , Severe Combined Immunodeficiency/immunology , T Follicular Helper Cells/immunology , Adenosine Deaminase/genetics , Adenosine Deaminase/immunology , Adolescent , Adult , Agammaglobulinemia/enzymology , Agammaglobulinemia/genetics , B-Lymphocytes/enzymology , B-Lymphocytes/pathology , Case-Control Studies , Cell Differentiation , Cell Proliferation , Child , Child, Preschool , Female , Humans , Immunologic Memory , Immunophenotyping , In Vitro Techniques , Infant , Infant, Newborn , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/immunology , Interleukins/biosynthesis , Lymphocyte Activation , Male , Mutation , Severe Combined Immunodeficiency/enzymology , Severe Combined Immunodeficiency/genetics , T Follicular Helper Cells/pathology
19.
Diagnostics (Basel) ; 10(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322644

ABSTRACT

Colorectal cancer (CRC) is the second cause of death in men and the third in women. This work deals with the study of the low molecular weight protein fraction of sera from patients who underwent surgery for CRC and who were followed for several years thereafter. MALDI-TOF MS was used to identify serum peptidome profiles of healthy controls, non-metastatic CRC patients and metastatic CRC patients. A multiple regression model was applied to signals preliminarily selected by SAM analysis to take into account the age and gender differences between the groups. We found that, while a signal m/z 2021.08, corresponding to the C3f fragment of the complement system, appears significantly increased only in serum from metastatic CRC patients, a m/z 1561.72 signal, identified as a prothrombin fragment, has a significantly increased abundance in serum from non-metastatic patients as well. The findings were also validated by a bootstrap resampling procedure. The present results provide the basis for further studies on large cohorts of patients in order to confirm C3f and prothrombin as potential serum biomarkers. Thus, new and non-invasive tests might be developed to improve the classification of colorectal cancer.

20.
Mar Drugs ; 19(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374863

ABSTRACT

Inflammation and oxidative stress are part of the complex biological responses of body tissues to harmful stimuli. In recent years, due to the increased understanding that oxidative stress is implicated in several diseases, pharmaceutical industries have invested in the research and development of new antioxidant compounds, especially from marine environment sources. Marine seaweeds have shown the presence of many bioactive secondary metabolites, with great potentialities from both the nutraceutical and the biomedical point of view. In this study, 50%-ethanolic and DMSO extracts from the species C. amentacea var. stricta were obtained for the first time from seaweeds collected in the Ligurian Sea (north-western Mediterranean). The bioactive properties of these extracts were then investigated, in terms of quantification of specific antioxidant activities by relevant ROS scavenging spectrophotometric tests, and of anti-inflammatory properties in LPS-stimulated macrophages by evaluation of inhibition of inflammatory cytokines and mediators. The data obtained in this study demonstrate a strong anti-inflammatory effect of both C. amentacea extracts (DMSO and ethanolic). The extracts showed a very low grade of toxicity on RAW 264.7 macrophages and L929 fibroblasts and a plethora of antioxidant and anti-inflammatory effects that were for the first time thoroughly investigated. The two extracts were able to scavenge OH and NO radicals (OH EC50 between 392 and 454 µg/mL; NO EC50 between 546 and 1293 µg/mL), to partially rescue H2O2-induced RAW 264.7 macrophages cell death, to abate intracellular ROS production in H2O2-stimulated macrophages and fibroblasts and to strongly inhibit LPS-induced inflammatory mediators, such as NO production and IL-1α, IL-6, cyclooxygenase-2 and inducible NO synthase gene expression in RAW 264.7 macrophages. These results pave the way, for the future use of C. amentacea metabolites, as an example, as antioxidant food additives in antiaging formulations as well as in cosmetic lenitive lotions for inflamed and/or damaged skin.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Fibroblasts/drug effects , Macrophages/drug effects , Oxidative Stress/drug effects , Phaeophyceae/metabolism , Animals , Anti-Inflammatory Agents/isolation & purification , Antioxidants/isolation & purification , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Hydrogen Peroxide/toxicity , Inflammation Mediators/metabolism , Lipopolysaccharides/toxicity , Macrophages/metabolism , Macrophages/pathology , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...