Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Chem Neurosci ; 14(20): 3745-3751, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37724996

ABSTRACT

The microtubule (MT) instability observed in Alzheimer's disease (AD) is commonly attributed to hyperphosphorylation of the MT-associated protein, tau. In vivo PET imaging offers an opportunity to gain critical information about MT changes with the onset and development of AD and related dementia. We developed the first brain-penetrant MT PET ligand, [11C]MPC-6827, and evaluated its in vivo imaging utility in vervet monkeys. Consistent with our previous in vitro cell uptake and in vivo rodent imaging experiments, [11C]MPC-6827 uptake increased with MT destabilization. Radioactive uptake was inversely related to (cerebrospinal fluid) CSF Aß42 levels and directly related to age in a nonhuman primate (NHP) model of AD. Additionally, in vitro autoradiography studies also corroborated PET imaging results. Here, we report the preliminary results of PET imaging with [11C]MPC-6827 in four female vervet monkeys with high or low CSF Aß42 levels, which have been shown to correlate with the Aß plaque burden, similar to humans.


Subject(s)
Alzheimer Disease , Animals , Female , Humans , Chlorocebus aethiops , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Positron-Emission Tomography/methods , Microtubules/metabolism , Primates/metabolism , Biomarkers/cerebrospinal fluid , Peptide Fragments
2.
J Med Chem ; 66(13): 9120-9129, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37315328

ABSTRACT

G-protein-coupled receptor 119 (GPR119) has emerged as a promising target for treating type 2 diabetes mellitus. Activating GPR119 improves glucose homeostasis, while suppressing appetite and weight gain. Measuring GPR119 levels in vivo could significantly advance GPR119-based drug development strategies including target engagement, occupancy, and distribution studies. To date, no positron emission tomography (PET) ligands are available to image GPR119. In this paper, we report the synthesis, radiolabeling, and preliminary biological evaluations of a novel PET radiotracer [18F]KSS3 to image GPR119. PET imaging will provide information on GPR119 changes with diabetic glycemic loads and the efficacy of GPR119 agonists as antidiabetic drugs. Our results demonstrate [18F]KSS3's high radiochemical purity, specific activity, cellular uptake, and in vivo and ex vivo uptake in pancreas, liver, and gut regions, with high GPR119 expression. Cell pretreatment with nonradioactive KSS3, rodent PET imaging, biodistribution, and autoradiography studies showed significant blocking in the pancreas showing [18F]KSS3's high specificity.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Ligands , Diabetes Mellitus, Type 2/drug therapy , Radiochemistry , Tissue Distribution , Positron-Emission Tomography/methods , Fluorine Radioisotopes , Receptors, G-Protein-Coupled/metabolism
3.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37111252

ABSTRACT

Impairment and/or destabilization of neuronal microtubules (MTs) resulting from hyper-phosphorylation of the tau proteins is implicated in many pathologies, including Alzheimer's disease (AD), Parkinson's disease and other neurological disorders. Increasing scientific evidence indicates that MT-stabilizing agents protect against the deleterious effects of neurodegeneration in treating AD. To quantify these protective benefits, we developed the first brain-penetrant PET radiopharmaceutical, [11C]MPC-6827, for in vivo quantification of MTs in rodent and nonhuman primate models of AD. Mechanistic insights revealed from recently reported studies confirm the radiopharmaceutical's high selectivity for destabilized MTs. To further translate it to clinical settings, its metabolic stability and pharmacokinetic parameters must be determined. Here, we report in vivo plasma and brain metabolism studies establishing the radiopharmaceutical-binding constants of [11C]MPC-6827. Binding constants were extrapolated from autoradiography experiments; pretreatment with a nonradioactive MPC-6827 decreased the brain uptake >70%. It exhibited ideal binding characteristics (typical of a CNS radiopharmaceutical) including LogP (2.9), Kd (15.59 nM), and Bmax (11.86 fmol/mg). Most important, [11C]MPC-6827 showed high serum and metabolic stability (>95%) in rat plasma and brain samples.

4.
J Aerosol Med Pulm Drug Deliv ; 36(1): 20-26, 2023 02.
Article in English | MEDLINE | ID: mdl-36594924

ABSTRACT

Introduction: The delivery of cell therapies may be an important frontier to treat different respiratory diseases in the near future. However, the cell size, delivery conditions, cell viability, and effect in the pulmonary function are critical factors. We performed a proof-of-concept experiment using ex vivo lungs and novel subglottic airway device that allows for selective lobar isolation and administration of drugs and biologics in liquid solution deep into the lung tissues, while simultaneously ventilating the rest of the lung lobes. Methods: We used radiolabeled cells and positron emission tomography-computed tomography (PET-CT) imaging to demonstrate the feasibility of high-yield cell delivery to a specifically targeted lobe. This study proposes an alternative delivery method of live cells labeled with radioactive isotope into the lung parenchyma and tracks the cell delivery using PET-CT imaging. The technique combines selective lobar isolation and lobar infusion to carry large particles distal to the trachea, subtending bronchial segments and reaching alveoli in targeted regions. Results: The solution with cells and carrier achieved a complete and homogeneous lobar distribution. An increase in tissue density was shown on the computed tomography (CT) scan, and the PET-CT imaging demonstrated retention of the activity at central, peripheral lung parenchyma, and pleural surface. The increase in CT density and metabolic activity of the isotope was restricted to the desired lobe only without leak to other lobes. Conclusion: The selective lobe delivery is targeted and imaging-guided by bronchoscopy and CT to a specific diseased lobe during mechanical ventilation. The feasibility of high-yield cell delivery demonstrated in this study will lead to the development of potential novel therapies that contribute to lung health.


Subject(s)
Positron Emission Tomography Computed Tomography , Respiration, Artificial , Administration, Inhalation , Lung/diagnostic imaging , Stem Cells
5.
Biomed Pharmacother ; 156: 113937, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36411624

ABSTRACT

Over production of reactive oxygen species (ROS) caused by altered redox regulation of signaling pathways is common in many types of cancers. While PET imaging is recognized as the standard tool for cancer imaging, there are no clinically-approved PET radiotracers for ROS-imaging in cancer diagnosis and treatment. An ascorbate-based radio ligand promises to meet this urgent need. Our laboratory recently synthesized [18F] KS1, a fluoroethoxy furanose ring-containing ascorbate derivative, to track ROS in prostate tumor-bearing mice. Here we report cell uptake assays of [18F]KS1 with different ROS-regulating agents, PET imaging in head and neck squamous cell carcinoma (HNSCC) mice, and doxorubicin-induced rats; PET imaging in healthy and irradiated hepatic tumor-bearing rhesus to demonstrate its translational potential. Our preliminary evaluations demonstrated that KS1 do not generate ROS in tumor cells at tracer-level concentrations and tumor-killing properties at pharmacologic doses. [18F]KS1 uptake was low in HNSCC pretreated with ROS blockers, and high with ROS inducers. Tumors in high ROS-expressing SCC-61 took up significantly more [18F]KS1 than rSCC-61 (low-ROS expressing HNSCC); high uptake in doxorubicin-treated rats compared to saline-treated controls. Rodent biodistribution and PET imaging of [18F]KS1 in healthy rhesus monkeys demonstrated its favorable safety, pharmacokinetic properties with excellent washout profile, within 3.0 h of radiotracer administration. High uptake of [18F]KS1 in liver tumor tissues of the irradiated hepatic tumor-bearing monkey showed target selectivity. Our strong data in vitro, in vivo, and ex vivo here supports the high translational utility of [18F]KS1 to image ROS.


Subject(s)
Head and Neck Neoplasms , Liver Neoplasms , Male , Animals , Rats , Mice , Ligands , Reactive Oxygen Species/metabolism , Tissue Distribution , Squamous Cell Carcinoma of Head and Neck , Rodentia/metabolism , Ascorbic Acid , Head and Neck Neoplasms/diagnostic imaging , Doxorubicin , Primates/metabolism
6.
EJNMMI Res ; 12(1): 41, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35881263

ABSTRACT

BACKGROUND: Microtubules (MTs) are critical for cell structure, function, and survival. MT instability may contribute to Alzheimer's disease (AD) pathogenesis as evidenced by persistent negative regulation (phosphorylation) of the neuronal microtubule-associated protein tau. Hyperphosphorylated tau, not bound to MTs, forms intraneuronal pathology that correlates with dementia and can be tracked using positron emission tomography (PET) imaging. The contribution of MT instability in AD remains unknown, though it may be more proximal to neuronal dysfunction than tau accumulation. Our lab reported the first brain-penetrant MT-based PET ligand, [11C]MPC-6827, and its PET imaging with this ligand in normal rodents and non-human primates demonstrated high brain uptake and excellent pharmacokinetics. Target engagement and mechanism of action using in vitro, in vivo, and ex vivo methods were evaluated here. METHODS: In vitro cell uptake assay was performed in SH-SY5Y neuronal cells with [11C]MPC-6827, with various MT stabilizing and destabilizing agents. To validate the in vitro results, wild type (WT) mice (n = 4) treated with a brain-penetrant MT stabilizing drug (EpoD) underwent microPET/CT brain imaging with [11C]MPC-6827. To determine the influence of tau protein on radiotracer binding in the absence of protein accumulation, we utilized tau knockout (KO) mice. In vivo microPET imaging, ex vivo biodistribution, and autoradiography studies were performed in tau KO and WT mice (n = 6/group) with [11C]MPC-6827. Additionally, α, ß, and acetylated tubulin levels in both brain samples were determined using commercially available cytoskeleton-based MT kit and capillary electrophoresis immunoblotting assays. RESULTS: Cell uptake demonstrated higher radioactive uptake with MT destabilizing agents and lower uptake with stabilizing agents compared to untreated cells. Similarly, acute treatment with EpoD in WT mice decreased [11C]MPC-6827 brain uptake, assessed with microPET/CT imaging. Compared to WT mice, tau KO mice expressed significantly lower ß tubulin, which contains the MPC-6827 binding domain, and modestly lower levels of acetylated α tubulin, indicative of unstable MTs. In vivo imaging revealed significantly higher [11C]MPC-6827 uptake in tau KOs than WT, particularly in AD-relevant brain regions known to express high levels of tau. Ex vivo post-PET biodistribution and autoradiography confirmed the in vivo results. CONCLUSIONS: Collectively, our data indicate that [11C]MPC-6827 uptake inversely correlates with MT stability and may better reflect the absence of tau than total tubulin levels. Given the radiotracer binding does not require the presence of aggregated tau, we hypothesize that [11C]MPC-6827 may be particularly useful in preclinical stages of AD prior to tau deposition. Our study provides immediate clarity on high uptake of the MT-based radiotracer in AD brains, which directly informs clinical utility in MT/tau-based PET imaging studies.

7.
Neuropharmacology ; 212: 109066, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35461879

ABSTRACT

Many tobacco smokers consume nicotine intermittently, but the underlying mechanisms and neurobiological changes associated with intermittent nicotine intake are unclear. Understanding intermittent nicotine intake is a high priority, as it could promote therapeutic strategies to attenuate tobacco consumption. We examined nicotine intake behavior and neurobiological changes in male rats that were trained to self-administer nicotine during brief (5 min) trials interspersed with longer (15 min) drug-free periods. Rats readily adapted to intermittent access (IntA) SA following acquisition on a continuous access (ContA) schedule. Probabilistic analysis of IntA nicotine SA suggested reduced nicotine loading behavior compared to ContA, and nicotine pharmacokinetic modeling revealed that rats taking nicotine intermittently may have increased intake to maintain blood levels of nicotine that are comparable to ContA SA. After IntA nicotine SA, rats exhibited an increase in unreinforced responses for nicotine-associated cues (incubation of craving) and specific alterations in the striatal proteome after 7 days without nicotine. IntA nicotine SA also induced nAChR functional upregulation in the interpeduncular nucleus (IPN), and it enhanced nicotine binding in the brain as determined via [11C]nicotine positron emission tomography. Reducing the saliency of the cue conditions during the 5 min access periods attenuated nicotine intake, but incubation of craving was preserved. Together, these results indicate that IntA conditions promote nicotine SA and nicotine seeking after a nicotine-free period.


Subject(s)
Interpeduncular Nucleus , Nicotine , Animals , Behavior, Animal , Drug-Seeking Behavior , Interpeduncular Nucleus/metabolism , Male , Rats , Recurrence , Self Administration
8.
Front Med (Lausanne) ; 9: 817274, 2022.
Article in English | MEDLINE | ID: mdl-35295607

ABSTRACT

Purpose: Microtubules (MTs) are structural units made of α and ß tubulin subunits in the cytoskeleton responsible for axonal transport, information processing, and signaling mechanisms-critical for healthy brain function. Chronic cocaine exposure affects the function, organization, and stability of MTs in the brain, thereby impairing overall neurochemical and cognitive processes. At present, we have no reliable, non-invasive methods to image MTs for cocaine use disorder (CUD). Recently we reported the effect of cocaine in patient-derived neuroblastoma SH-SY5Y cells. Here we report preliminary results of a potential imaging biomarker of CUD using the brain penetrant MT-based radiotracer, [11C]MPC-6827, in an established rodent model of cocaine self-administration (SA). Methods: Cell uptake studies were performed with [11C]MPC-6827 in SH-SY5Y cells, treated with or without cocaine (n = 6/group) at 30 and 60 min incubations. MicroPET/CT brain scans were performed in rats at baseline and 35 days after cocaine self-administration and compared with saline-treated rats as controls (n = 4/sex). Whole-body post-PET biodistribution, plasma metabolite assay, and brain autoradiography were performed in the same rats from imaging. Results: Cocaine-treated SH-SY5Y cells demonstrated a ∼26(±4)% decrease in radioactive uptake compared to non-treated controls. Both microPET/CT imaging and biodistribution results showed lower (∼35 ± 3%) [11C]MPC-6827 brain uptake in rats that had a history of cocaine self-administration compared to the saline-treated controls. Plasma metabolite assays demonstrate the stability (≥95%) of the radiotracer in both groups. In vitro autoradiography also demonstrated lower radioactive uptake in cocaine rats compared to the control rats. [11C]MPC-6827's in vitro SH-SY5Y neuronal cell uptake, in vivo positron emission tomography (PET) imaging, ex vivo biodistribution, and in vitro autoradiography results corroborated well with each other, demonstrating decreased radioactive brain uptake in cocaine self-administered rats versus controls. There were no significant differences either in cocaine intake or in [11C]MPC-6827 uptake between the male and female rats. Conclusions: This project is the first to validate in vivo imaging of the MT-associations with CUD in a rodent model. Our initial observations suggest that [11C]MPC-6827 uptake decreases in cocaine self-administered rats and that it may selectively bind to destabilized tubulin units in the brain. Further longitudinal studies correlating cocaine intake with [11C]MPC-6827 PET brain measures could potentially establish the MT scaffold as an imaging biomarker for CUD, providing researchers and clinicians with a sensitive tool to better understand the biological underpinnings of CUD and tailor new treatments.

9.
Methods Mol Biol ; 2413: 13-22, 2022.
Article in English | MEDLINE | ID: mdl-35044650

ABSTRACT

The increasing number of different novel positron emission tomography (PET) radiopharmaceuticals poses challenges for their manufacturing procedures at different PET research facilities. Recent commercially available radiochemistry units with disposable cassettes are becoming common stations to produce radiopharmaceuticals with high specifications to understand the critical PET imaging outputs of the study. Therefore, several radiochemists across the PET research centers develop and optimize their own radiochemistry protocols to develop a novel or routine radiopharmaceutical at their lab. In this report, we describe the general procedure and steps followed to develop a (clinical-grade) radiopharmaceutical on a commercially available radiochemistry unit, TRASIS AIO. As an example, we use our routine protocol followed for the production of [11C]acetate, a fatty acid metabolic PET imaging ligand for several cancer imaging studies.


Subject(s)
Neoplasms , Radiopharmaceuticals , Humans , Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Radiochemistry/methods
10.
Methods Mol Biol ; 2413: 23-35, 2022.
Article in English | MEDLINE | ID: mdl-35044651

ABSTRACT

Tumorigenesis is a multistep process marked by variations in numerous metabolic pathways that affect cellular architectures and functions. Cancer cells reprogram their energy metabolism to enable several basic molecular functions, including membrane biosynthesis, receptor regulations, bioenergetics, and redox stress. In recent years, cancer diagnosis and treatment strategies have targeted these specific metabolic changes and the tumor's interactions with its microenvironment. Positron emission tomography (PET) captures all molecular alterations leading to abnormal function and cancer progression. As a result, the development of PET radiotracers increasingly focuses on irregular biological pathways or cells that overexpress receptors that have the potential to function as biomarkers for early diagnosis and treatment measurements as well as research. This chapter reviews both established and evolving PET radiotracers used to image tumor biology. We have also included a few advantages and disadvantages of the routinely used PET radiotracers in cancer imaging.


Subject(s)
Neoplasms , Positron-Emission Tomography , Humans , Metabolic Networks and Pathways , Neoplasms/diagnostic imaging , Neoplasms/therapy , Positron-Emission Tomography/methods , Radiopharmaceuticals , Tumor Microenvironment
11.
Mol Biol Rep ; 48(4): 3871-3876, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33880672

ABSTRACT

Microtubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


Subject(s)
Cocaine/pharmacology , Ethanol/pharmacology , Quinazolines/pharmacology , Radiopharmaceuticals/pharmacology , Carbon Radioisotopes , Cell Line, Tumor , Central Nervous System Agents/pharmacology , Humans , Microtubules/drug effects , Microtubules/metabolism , Neurons/drug effects , Neurons/metabolism , Protein Binding , Tubulin/metabolism , Tubulin Modulators/pharmacology
12.
Molecules ; 25(10)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414052

ABSTRACT

Dysregulation of microtubules is commonly associated with several psychiatric and neurological disorders, including addiction and Alzheimer's disease. Imaging of microtubules in vivo using positron emission tomography (PET) could provide valuable information on their role in the development of disease pathogenesis and aid in improving therapeutic regimens. We developed [11C]MPC-6827, the first brain-penetrating PET radiotracer to image microtubules in vivo in the mouse brain. The aim of the present study was to assess the reproducibility of [11C]MPC-6827 PET imaging in non-human primate brains. Two dynamic 0-120 min PET/CT imaging scans were performed in each of four healthy male cynomolgus monkeys approximately one week apart. Time activity curves (TACs) and standard uptake values (SUVs) were determined for whole brains and specific regions of the brains and compared between the "test" and "retest" data. [11C]MPC-6827 showed excellent brain uptake with good pharmacokinetics in non-human primate brains, with significant correlation between the test and retest scan data (r = 0.77, p = 0.023). These initial evaluations demonstrate the high translational potential of [11C]MPC-6827 to image microtubules in the brain in vivo in monkey models of neurological and psychiatric diseases.


Subject(s)
Brain , Carbon Radioisotopes , Microtubules/metabolism , Positron-Emission Tomography , Quinazolines/pharmacology , Radiopharmaceuticals/pharmacology , Animals , Brain/diagnostic imaging , Brain/metabolism , Macaca fascicularis , Male
13.
Pharmacol Rep ; 72(3): 705-718, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32200493

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a widespread dementia-related disease affecting mankind worldwide. A cholinergic hypothesis is considered the most effective target for treating mild to moderate AD. Present study aims to identify new scaffolds for inhibiting acetylcholinesterase activity. METHODS: To find Acetylcholinesterase (AChE) inhibitors, we computationally designed and chemically synthesized a series of cation-π inhibitors based on novel scaffolds that potentially block AChE. The cytotoxic effect of inhibitors were determined by MTT. AChE inhibition experiment was performed by Ellman and the Amplex red method in the SH-SY5Y cell line. Further, the experimental data on designed compounds corroborate with various computational studies that further elucidate the binding mode of interactions and binding affinity. RESULTS: The inhibitors were designed to promote dual binding and were incorporated with groups that may facilitate any of the cation- π, hydrophobic and hydrogen-bonding interactions with the conserved and hot-spot residues in the binding site. The inhibitors possessing pyridine-N-methylated pyridinium group and thereby involved in cation- π interactions are highly active relative to the marketed drug Donepezil as well as the designed analogs that lack the group. In vitro enzymatic Ellman assay and Amplex red assay on SH-SY5Y cell line estimated IC50 of the designed compounds in nM range with one having binding affinity higher than Donepezil. Compounds exhibit no significant toxicity up to µM range. CONCLUSIONS: Compounds possessing methylidenecyclohexanone scaffolds, with characteristic dual-binding and involving strong cation-π interactions, serves as new leads for AChE and opens a new direction for drug discovery efforts.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Binding Sites , Cations , Cell Line, Tumor , Cell Survival/drug effects , Cholinesterase Inhibitors/chemistry , Donepezil/chemistry , Donepezil/pharmacology , Drug Design , Humans , Molecular Docking Simulation , Neuroblastoma , Oxazines , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 30(2): 126785, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31753695

ABSTRACT

Altered dynamics of microtubules (MT) are implicated in the pathophysiology of a number of brain diseases. Therefore, radiolabeled MT targeted ligands that can penetrate the blood brain barrier (BBB) may offer a direct and sensitive approach for diagnosis, and assessing the clinical potential of MT targeted therapeutics using PET imaging. We recently reported two BBB penetrating radioligands, [11C]MPC-6827 and [11C]HD-800 as specific PET ligands for imaging MTs in brain. The major metabolic pathway of the above molecules is anticipated to be via the initial labeling site, O-methyl, compared to the N-methyl group. Herein, we report the radiosynthesis of N-11CH3-MPC-6827 and N-11CH3-HD-800 and a comparison of their in vivo binding with the corresponding O-11CH3 analogues using microPET imaging and biodistribution methods. Both O-11CH3 and N-11CH3 labeled MT tracers exhibit high specific binding and brain. The N-11CH3 labeled PET ligands demonstrated similar in vivo binding characteristics compared with the corresponding O-11CH3 labeled tracers, [11C]MPC-6827 and [11C]HD-800 respectively.


Subject(s)
Microtubules/chemistry , Radiopharmaceuticals/chemistry , Animals , Blood-Brain Barrier/metabolism , Brain/diagnostic imaging , Brain/metabolism , Carbon Radioisotopes/chemistry , Isotope Labeling , Ligands , Mice , Microtubules/metabolism , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/metabolism , Tissue Distribution
15.
Bioorg Med Chem Lett ; 29(23): 126707, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31630858

ABSTRACT

We have synthesized a new series of 1,2,3-triazolo piperazine and piperidine carboxylate derivatives using a simple and one-pot click chemistry with significantly reduced reaction times (~5 min) and enhanced reaction yields (~95-98%). The fourteen novel compounds thus synthesized were tested for ability to target GPR119, a G-protein coupled target receptor that plays critical role in regulation of type-2 diabetes mellitus. Four analogs (3e, 3g, 5e and 5g) demonstrated similar or better EC50 values over previously reported AR231453 activity towards GPR119.


Subject(s)
Click Chemistry/methods , Piperazine/therapeutic use , Piperidines/therapeutic use , Receptors, G-Protein-Coupled/drug effects , Humans , Molecular Structure , Piperazine/pharmacology , Piperidines/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...