Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38544197

ABSTRACT

During a vertical vortex-induced vibration (VVIV), an undulating bridge deck will affect drivers' sightlines, causing the phenomenon of drifting and changes in the far blind area, thus presenting a potential threat to driving safety. Consequently, to ensure the safety of driving on a suspension bridge deck under VVIV, it is necessary to perceive the far blind spot caused by the occlusion of the driving sightlines under this condition, and to establish an online perception and evaluation mechanism for driving safety. With a long-span suspension bridge experiencing VVIV as the engineering background, this paper utilizes the acceleration integration algorithm and the sine function fitting method to achieve the online perception of real-time dynamic configurations of the main girder. Then, based on the configurations, the maximum height of the driver's far blind area and effective sight distance are calculated accordingly, and the impact of different driving conditions on them is discussed. The proposed technical framework for driving safety perception in far blind spots is feasible, as it can achieve real-time estimation of the maximum height and effective distance of the far blind area, thereby providing technical support for bridge-vehicle-human collaborative perception and traffic control during vortex-induced vibration.

2.
Sensors (Basel) ; 22(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36236441

ABSTRACT

Establishing an online perception mechanism for a driver's front blind area on a full bridge under vertical vortex-induced vibration (VVIV) is essential for ensuring road safety and traffic control on bridge decks under specific conditions. Based on accelerations of vibration monitoring of the main girders, this paper uses a real-time acceleration integration algorithm to obtain real-time displacements of measurement points; realizes the real-time estimation of the dynamic configurations of a main girder through parametric function fitting; and then can perceive the front blind area for vehicles driving on bridges experiencing VVIV in real time. On this basis, taking a long-span suspension bridge suffering from VVIV as an engineering example, the influence of different driving conditions on the front blind area is examined. Then, the applicability of the intelligent perception technology framework of the front blind area is verified. The results indicate that, during VVIV, the driver's front blind area changes periodically and the vehicle model has the most significant impact on the front blind area; in contrast, the vehicle's speed and the times of the vehicle entering the bridge have minimal impact on it. Meanwhile, it is shown that the framework can accurately perceive front blind areas of vehicles driving on the bridge, and identify different vehicle models, speeds and times of vehicle bridge entries in real time.


Subject(s)
Automobile Driving , Acceleration , Accidents, Traffic , Perception , Vibration
3.
Materials (Basel) ; 11(11)2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30366385

ABSTRACT

It is typically difficult for engineers to detect the tension force of prestressed tendons in concrete structures. In this study, a smart bar is fabricated by embedding a Fiber Bragg Grating (FBG) in conjunction with its communication fiber into a composite bar surrounded by carbon fibers. Subsequently, a smart composite cable is twisted by using six outer steel wires and the smart bar. Given the embedded FBG, the proposed composite cable simultaneously provides two functions, namely withstanding tension force and self-sensing the stress state. It can be potentially used as an alternative to a prestressing reinforcement tendon for prestressed concrete (PC), and thereby provide a solution to detecting the stress state of the prestressing reinforcement tendons during construction and operation. In the study, both the mechanical properties and sensing performance of the proposed composite cable are investigated by experimental studies under different force standing conditions. These conditions are similar to those of ordinary prestressed tendons of a real PC components in service or in a construction stage. The results indicate that the proposed smart composite cable under the action of ultra-high pretension stress exhibits reliable mechanical performance and sensing performance, and can be used as a prestressed tendon in prestressed concrete structures.

SELECTION OF CITATIONS
SEARCH DETAIL