Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Front Pharmacol ; 15: 1376252, 2024.
Article in English | MEDLINE | ID: mdl-38910890

ABSTRACT

Pyruvate kinase M2 (PKM2), a rate limiting enzyme in glycolysis, is a cellular regulator that has received extensive attention and regards as a metabolic regulator of cellular metabolism and energy. Kidney is a highly metabolically active organ, and glycolysis is the important energy resource for kidney. The accumulated evidences indicates that the enzymatic activity of PKM2 is disturbed in kidney disease progression and treatment, especially diabetic kidney disease and acute kidney injury. Modulating PKM2 post-translational modification determines its enzymatic activity and nuclear translocation that serves as an important interventional approach to regulate PKM2. Emerging evidences show that PKM2 and its post-translational modification participate in kidney disease progression and treatment through modulating metabolism regulation, podocyte injury, fibroblast activation and proliferation, macrophage polarization, and T cell regulation. Interestingly, PKM2 activators (TEPP-46, DASA-58, mitapivat, and TP-1454) and PKM2 inhibitors (shikonin, alkannin, compound 3k and compound 3h) have exhibited potential therapeutic property in kidney disease, which indicates the pleiotropic effects of PKM2 in kidney. In the future, the deep investigation of PKM2 pleiotropic effects in kidney is urgently needed to determine the therapeutic effect of PKM2 activator/inhibitor to benefit patients. The information in this review highlights that PKM2 functions as a potential biomarker and therapeutic target for kidney diseases.

2.
Exp Gerontol ; 188: 112393, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458480

ABSTRACT

Diabetic kidney disease (DKD) is leading causes and one of the fastest growing causes of chronic kidney disease worldwide, and leads to high morbidity and mortality. Emerging evidences have revealed gut microbiota dysbiosis and related metabolism dysfunction play a dominant role in DKD progression and treatment through modulating inflammation. Our previous studies showed that Tangshen Formula (TSF), a Chinese herbal prescription, exhibited anti-inflammatory effect on DKD, but underlying mechanism that involved gut microbiota and related metabolism in aged model remained obscure. Here, BTBR ob/ob mice were used to establish aged DKD model, and 16S rRNA sequence and untargeted metabolomic analyses were employed to investigate the correlation between colonic microbiota and serum metabolism. The aged ob/ob mice exhibited obvious glomerular and renal tubule injury and kidney function decline in kidney, while TSF treatment significantly attenuated these abnormalities. TSF also exhibited potent anti-inflammatory effect in aged ob/ob mice indicating by reduced proinflammatory factor IL-6 and TNF-α, MCP-1 and COX-2 in serum, kidney and intestine, which suggested the involvement of gut microbiota with TSF effect. The 16S rDNA sequencing of the colonic microbiome and untargeted serum metabolomics analysis revealed significant differences in gut microbiota structure and serum metabolomic profiles between WT and ob/ob mice. Notably, TSF treatment reshaped the structure of gut microbiota and corrected the disorder of metabolism especially tryptophan metabolism and arginine biosynthesis. TSF increased Anaeroplasma and Barnesiella genera and decreased Romboutsia, Akkermansia, and Collinsella genera, and further elevated tryptophan, 5-hydroxyindoleacetate, glutamic acid, aspartate and reduced 4-hydroxy-2-quinolinecarboxylic acid, indole-3-acetic acid, xanthurenic acid, glutamine. Further correlation analysis indicated that disturbed gut microbiota was linked to tryptophan metabolism and arginine biosynthesis to regulate inflammation in aged DKD. Our data revealed that TSF attenuated renal inflammation by modulating gut microbiota and related amino acid metabolism in aged DKD model, highlighting gut microbiota and related metabolism functioned as potential therapeutic target for DKD in elderly patients.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Humans , Aged , Mice , Animals , Diabetic Nephropathies/drug therapy , RNA, Ribosomal, 16S/genetics , Tryptophan , Inflammation/drug therapy , Anti-Inflammatory Agents/therapeutic use , Arginine
3.
PLoS Genet ; 20(3): e1011196, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466721

ABSTRACT

Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.


Subject(s)
Aedes , Receptors, Steroid , Animals , Female , Humans , Aedes/genetics , Aedes/metabolism , Ecdysone/metabolism , Mosquito Vectors/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Homeostasis/genetics , Insect Proteins/genetics , Insect Proteins/metabolism
4.
Zhongguo Gu Shang ; 37(3): 306-10, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38515420

ABSTRACT

OBJECTIVE: To explore characteristics of clinical and imaging findings in patients with fat embolism syndrome. METHODS: From January 2021 to October 2022,clinical manifestations of 13 patients with fat embolism due to fracture or orthopaedic surgery were retrospectively analyzed,including 11 males and 2 females,aged from 17 to 60 years old. Mental and respiratory abnormalities and changes in vital signs occurred after admission or after surgery,and patient's chest and brain imaging results were abnormal. The patient's mental and respiratory abnormalities,vital signs,chest and brain imaging results were continuously monitored. RESULTS: The main clinical manifestations of fat embolism syndrome were abnormal pulmonary respiration in 13 patients,abnormal central nervous function in 7 patients,and spotted rash in 2 patients. Chest CT showed diffuse distribution of ground glass shadows in 13 patients,and severe symptoms were "snowstorm". Nine patients with ground glass fusion consolidation,5 patients with multiple nodules and 4 patients accompanied by bilateral pleural effusion. Head CT findings of 5 patients were negative,and head MRI findings of 1 patient showed multiple T1WI low signal,T2WI high signal shadow,DWI high signal shadow,and "starry sky sign" in basal ganglia,radiative crown,hemioval center,thalamus,frontal parietal cortex and subcortex. CONCLUSION: Fat embolism syndrome has a high mortality rate. Clinical manifestations of respiratory system and nervous system are not specific,and the skin spot rash has a characteristic manifestation. The "blizzard" sign is the specific manifestation of chest X-ray and CT examination of fat embolism,and the "starry sky" sign is the typical manifestation of diffusion-weighted sequence of brain MRI examination of fat embolism.


Subject(s)
Embolism, Fat , Exanthema , Male , Female , Humans , Adolescent , Young Adult , Adult , Middle Aged , Retrospective Studies , Magnetic Resonance Imaging , Brain , Embolism, Fat/diagnostic imaging , Embolism, Fat/etiology
5.
J Org Chem ; 89(2): 928-938, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38181049

ABSTRACT

Chiral diarylmethylamides are a privileged skeleton in many bioactive molecules. However, the enantioselective synthesis of such molecules remains a long-standing challenge in organic synthesis. Herein, we report a chiral bifunctional squaramide catalyzed asymmetric aza-Michael addition of amides to in situ generated ortho-quinomethanes, affording enantioenriched diarylmethylamides in good yields with excellent enantioselectivities. This work not only provides a new strategy for the construction of the diarylmethylamides but also represents the practicability of amides as nitrogen-nucleophiles in asymmetric organocatalysis.

6.
J Org Chem ; 89(2): 975-985, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38181067

ABSTRACT

Enantioselective synthesis of eight-membered N-heterocycles represents a long-standing challenge in organic synthesis. Here, by combining the squaramide and DBU catalysis, a sequential asymmetric conjugate addition/cyclization reaction between benzofuran-derived azadienes and ynones has been well-developed, providing straightforward access to chiral eight-membered N-heterocycles in high yields with stereoselectivities. This protocol features the use of a bifunctional squaramide catalyst for controlling the enantioselectivity of products, while the DBU is utilized to achieve intramolecular cyclization and improve the diastereoselectivity of products.

7.
Org Lett ; 26(1): 258-263, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38157251

ABSTRACT

An one-pot organo- and iodine sequential catalysis strategy for reactions of amides with pyrazole-based primary amines was described to synthesize chiral α-amino amides with a quaternary stereocenter. This methodology exhibited strong asymmetric induction, resulting in a typical enantiomeric excess value exceeding 99% and diastereoselectivity up to >99:1 dr. Moreover, the reaction was conducted without the use of any metals or strong bases.

8.
Org Biomol Chem ; 21(45): 8979-8983, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37934046

ABSTRACT

The synthesis of stereo-defined α-trifluoromethyl arylenes is of great importance in medical chemistry, organic chemistry, and materials science. However, despite the recent advances, the Z-selective formation of α-trifluoromethyl arylenes has remained underdeveloped. Here, we describe a facile approach towards Z-α-trifluoromethyl arylenes through Pd-catalysed stereoselective fluoroarylation of 1,1-difluoroallenes in the presence of a bulky monophosphine ligand.

9.
Chem Commun (Camb) ; 59(61): 9348-9351, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37431636

ABSTRACT

We report herein the palladium-catalysed mono-selective C-H arylation of [2.2]paracyclophane (PCP) with diverse aryl iodides in the absence of any pendant directing groups, providing straightforward and modular access to C4-arylated [2.2]paracyclophanes. Moreover, a new PCP-containing biaryl monophosphine complex could be readily obtained through further derivation of the arylated product.

10.
Chem Commun (Camb) ; 59(57): 8822-8825, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37357694

ABSTRACT

A sequential asymmetric conjugate addition/cyclisation of α-bromohydroxamates with para-quinone methide derivatives has been developed, which provides enantioenriched 1,4-benzoxazepines in generally high yields (up to 95%) and good enantioselectivities (up to 97 : 3 er). This protocol not only offers a novel and straightforward strategy for constructing chiral 1,4-benzoxazepines, but also demonstrates the potential of α-bromohydroxamates as three-atom synthons in asymmetric cyclisation reactions.


Subject(s)
Indolequinones , Stereoisomerism , Cyclization
11.
Org Biomol Chem ; 21(7): 1389-1394, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36655625

ABSTRACT

We report herein a cationic iridium-catalysed thioether-directed alkyne-azide cycloaddition reaction. Diverse 2-alkynyl phenyl sulfides can undergo cycloaddition with different azides in a regioselective fashion. The reaction features high efficiency, a short reaction time, and a broad substrate scope, providing modular access to complex S-containing triazoles.

12.
Insect Sci ; 30(1): 81-94, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35633120

ABSTRACT

Hormones control the reproductive development of Aedes aegypti mosquitoes. The adult male reproductive process and mating behavior require adequate nutrients and energy. Understanding the molecular mechanism linking hormones, energy metabolism, and reproduction in male mosquitoes is important. In this study, we found that the size of the male accessory gland, an essential part of the male reproductive system, gradually increased after eclosion. However, it was significantly reduced in male mosquitoes deficient in methoprene-tolerant (Met), the receptor of juvenile hormone. Likewise, egg hatchability of females that mated with Met-depleted males showed the same downward trend. The mRNA level of the gene encoding accessory gland protein, l-asparaginase (ASNase), was reduced in Met dsRNA-treated males. Electrophoretic mobility shift assay and quantitative reverse transcription-PCR results revealed that Met was capable of binding directly to the promoter of ASNase and activated its transcription. RNA interference of ASNase in males resulted in the reduction of egg hatchability of the females with which they mated. These results showed that Met influenced the fecundity of male mosquitoes by directly upregulating the expression of the ASNase gene. Moreover, the levels of triacylglycerol and the sizes of lipid droplets were decreased by 72-78 h after eclosion in the fat body cells, whereas both of them increased in Met-depleted male mosquitoes, indicating that Met knockdown reduced lipid catabolism. These data demonstrate that Met might influence the egg hatchability of females by regulating lipid metabolism and the development of the male accessory gland in male mosquitoes.


Subject(s)
Aedes , Female , Male , Animals , Aedes/genetics , Juvenile Hormones/metabolism , Asparaginase/metabolism , Methoprene , Lipid Metabolism , Triglycerides/metabolism , Insect Proteins/genetics
13.
Acta Pharmacol Sin ; 44(5): 1038-1050, 2023 May.
Article in English | MEDLINE | ID: mdl-36470978

ABSTRACT

Renal interstitial fibrosis is the common pathological process of various chronic kidney diseases to end-stage renal disease. Inhibition of fibroblast activation attenuates renal interstitial fibrosis. Our previous studies show that poricoic acid A (PAA) isolated from Poria cocos is a potent anti-fibrotic agent. In the present study we investigated the effects of PAA on renal fibroblast activation and interstitial fibrosis and the underlying mechanisms. Renal interstitial fibrosis was induced in rats or mice by unilateral ureteral obstruction (UUO). UUO rats were administered PAA (10 mg·kg-1·d-1, i.g.) for 1 or 2 weeks. An in vitro model of renal fibrosis was established in normal renal kidney fibroblasts (NRK-49F cells) treated with TGF-ß1. We showed that PAA treatment rescued Sirt3 expression, and significantly attenuated renal fibroblast activation and interstitial fibrosis in both the in vivo and in vitro models. In TGF-ß1-treated NRK-49F cells, we demonstrated that Sirt3 deacetylated ß-catenin (a key transcription factor of fibroblast activation) and then accelerated its ubiquitin-dependent degradation, thus suppressing the protein expression and promoter activity of pro-fibrotic downstream target genes (twist, snail1, MMP-7 and PAI-1) to alleviate fibroblast activation; the lysine-49 (K49) of ß-catenin was responsible for Sirt3-mediated ß-catenin deacetylation. In molecular docking analysis, we found the potential interaction of Sirt3 and PAA. In both in vivo and in vitro models, pharmacological activation of Sirt3 by PAA significantly suppressed renal fibroblast activation via facilitating ß-catenin K49 deacetylation. In UUO mice and NRK-49F cells, Sirt3 overexpression enhanced the anti-fibrotic effect of PAA, whereas Sirt3 knockdown weakened the effect. Taken together, PAA attenuates renal fibroblast activation and interstitial fibrosis by upregulating Sirt3 and inducing ß-catenin K49 deacetylation, highlighting Sirt3 functions as a promising therapeutic target of renal fibroblast activation and interstitial fibrosis.


Subject(s)
Kidney Diseases , Sirtuin 3 , Triterpenes , beta Catenin , Animals , Mice , Rats , beta Catenin/chemistry , beta Catenin/metabolism , Fibroblasts , Fibrosis/drug therapy , Fibrosis/pathology , Kidney/pathology , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Molecular Docking Simulation , Signal Transduction , Sirtuin 3/drug effects , Sirtuin 3/metabolism , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-997252

ABSTRACT

Objective To investigate the infection and genotypes of Wolbachia in common mosquito species in Henan Province, so as to provide insights into management of mosquito-borne diseases. Methods Aedes, Culex and Anopheles samples were collected from cowsheds, sheepfolds and human houses in Puyang, Nanyang City and Xuchang cities of Henan Province from July to September, 2022, and the infection of Wolbachia was detected. The 16S rDNA and wsp genes of Wolbachia were amplified and sequenced. Sequence alignment was performed using the BLAST software, and the obtained 16S rDNA gene sequence was compared with the sequence of the 16S rDNA gene in GenBank database. In addition, the phylogenetic trees were created based on 16S rDNA and wsp gene sequences using the software MEGA 11.0. Results A total 506 female adult mosquitoes were collected from three sampling sites in Nanyang, Xuchang City and Puyang cities from July to September, 2022. The overall detection of Wolbachia was 45.1% (228/506) in mosquitoes, with a higher detection rate in A. albopictus than in Cx. pipiens pallens [97.9% (143/146) vs. 50.6% (85/168); χ2 = 88.064, P < 0.01]. The detection of Wolbachia in Cx. pipiens pallens was higher in Xuchang City (96.8%, 62/64) than in Nanyang (15.6%, 7/45) and Puyang cities (27.1%, 16/59) (χ2 = 89.950, P < 0.01). The homologies of obtained Wolbachia 16S rDNA and wsp gene sequences were 95.3% to 100.0% and 81.7% to 99.8%. Phylogenetic analysis based on wsp gene sequences showed Wolbachia supergroups A and B in mosquito samples, with wAlbA and wMors strains in supergroup A and wPip and wAlbB strains in supergroup B. Wolbachia strain wAlbB infection was detected in A. albopictus in Puyang and Nanyang Cities, while Wolbachia strain wPip infection was identified in A. albopictus in Xuchang City. Wolbachia strain wAlbA infection was detected in Cx. pipiens pallens sampled from three cities, and one Cx. pipiens pallens was found to be infected with Wolbachia strain wMors in Nanyang City. Conclusions Wolbachia infection is commonly prevalent in Ae. albopictus and Cx. pipiens pallens from Henan Province, and Wolbachia strains wAlbB and wAlbA are predominant in Ae. albopictus, while wPip strain is predominant in Cx. pipiens pallens. This is the first report to present Wolbachia wMors strain infection in Cx. pipiens pallens in Henan Province.

16.
Front Pharmacol ; 13: 1055296, 2022.
Article in English | MEDLINE | ID: mdl-36408255

ABSTRACT

Diabetic kidney disease (DKD) is the major complications of type 1 and 2 diabetes, and is the predominant cause of chronic kidney disease and end-stage renal disease. The treatment of DKD normally consists of controlling blood glucose and improving kidney function. The blockade of renin-angiotensin-aldosterone system and the inhibition of sodium glucose cotransporter 2 (SGLT2) have become the first-line therapy of DKD, but such treatments have been difficult to effectively block continuous kidney function decline, eventually resulting in kidney failure and cardiovascular comorbidities. The complex mechanism of DKD highlights the importance of multiple therapeutic targets in treatment. Chinese herbal medicine (active compound, extract and formula) synergistically improves metabolism regulation, suppresses oxidative stress and inflammation, inhibits mitochondrial dysfunction, and regulates gut microbiota and related metabolism via modulating GLP-receptor, SGLT2, Sirt1/AMPK, AGE/RAGE, NF-κB, Nrf2, NLRP3, PGC-1α, and PINK1/Parkin pathways. Clinical trials prove the reliable evidences for Chinese herbal medicine against DKD, but more efforts are still needed to ensure the efficacy and safety of Chinese herbal medicine. Additionally, the ideal combined therapy of Chinese herbal medicine and conventional medicine normally yields more favorable benefits on DKD treatment, laying the foundation for novel strategies to treat DKD.

17.
Med Res Rev ; 42(6): 2067-2101, 2022 11.
Article in English | MEDLINE | ID: mdl-35730121

ABSTRACT

Ischemia/reperfusion (IR) injury contributes to disability and mortality worldwide. Due to the complicated mechanisms and lack of proper therapeutic targets, few interventions are available that specifically target the pathogenesis of IR injury. Regulated cell death (RCD) of endothelial and parenchymal cells is recognized as the promising intervening target. Recent advances in IR injury suggest that small molecules exhibit beneficial effects on various RCD against IR injury, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, and parthanatos. Here, we describe the mechanisms behind these novel promising therapeutic targets and explain the machinery powering the small molecules. These small molecules exert protection by targeting endothelial or parenchymal cells to alleviate IR injury. Therapies of the ideal combination of small molecules targeting multiple cell types have shown potent synergetic therapeutic effects, laying the foundation for novel strategies to attenuate IR injury.


Subject(s)
Regulated Cell Death , Reperfusion Injury , Apoptosis , Humans , Ischemia/complications , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction
18.
Acta Pharmacol Sin ; 43(11): 2929-2945, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35577910

ABSTRACT

Recent studies have shown that endogenous metabolites act via aryl hydrocarbon receptor (AhR) signalling pathway in tubulointerstitial fibrosis (TIF) pathogenesis. However, the mechanisms underlying endogenous metabolite-mediated AhR activation are poorly characterised. In this study, we conducted untargeted metabolomics analysis to identify the significantly altered intrarenal metabolites in a mouse model of unilateral ureteral obstruction (UUO). We found that the levels of the metabolite 1-methoxypyrene (MP) and the mRNA expression of AhR and its target genes CYP1A1, CYP1A2, CYP1B1 and COX-2 were progressively increased in the obstructed kidney at Weeks 1, 2 and 3. Furthermore, these changes were positively correlated with progressive TIF in UUO mice. In NRK-52E, RAW 264.7 and NRK-49F cells, MP dose-dependently upregulated the mRNA expression of AhR and its four target genes and the protein expression of nuclear AhR, accompanied by the upregulated protein expression of collagen I, α-SMA and fibronectin, as well as downregulated E-cadherin expression. Consistently, oral administration of MP in mice progressively enhanced AhR activity and upregulated profibrotic protein expression in the kidneys; these effects were partially inhibited by AhR knockdown in MP-treated mice and cell lines. In addition, we screened and identified erythro-guaiacylglycerol-ß-ferulic acid ether (GFA), which was isolated from Semen plantaginis, as a new AhR antagonist. GFA significantly attenuated TIF in MP-treated NRK-52E cells and mice by partially antagonising AhR activity. Our results suggest that MP activates AhR signalling, thus mediating TIF through epithelial-mesenchymal transition and macrophage-myofibroblast transition. MP is a crucial metabolite that contributes to TIF via AhR signalling pathway.


Subject(s)
Kidney Diseases , Ureteral Obstruction , Mice , Animals , Receptors, Aryl Hydrocarbon/genetics , Fibrosis , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Ureteral Obstruction/complications , RNA, Messenger
19.
Org Biomol Chem ; 20(20): 4091-4095, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35522070

ABSTRACT

We describe here a Ni-catalysed deamidative fluorination of diverse amides with electrophilic fluorinating reagents. Different types of amides including aromatic amides and olefinic amides were well compatible, affording the corresponding acyl fluorides in good to excellent yields.


Subject(s)
Amides , Halogenation , Catalysis , Fluorides , Indicators and Reagents
20.
Chem Commun (Camb) ; 58(43): 6280-6283, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35507823

ABSTRACT

We describe here a facile synthesis of 9-arylfluorenes and spirobifluorenes from readily available 1,1-diarylmethylamines and iodoarenes through Pd-cataylsed C(sp2)-H arylation and a sequential deaminative annulation. The reaction features high efficiency and simplicity of operation, constituting an interesting shortcut to access fluorene compounds.


Subject(s)
Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...