Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; : 1-13, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37965746

ABSTRACT

ABSTRACTInaccessibility and expensiveness of vital infrastructures are the main problems in some urban and rural areas to supply fresh water, sustainable energy, and wastewater treatment. An effective solution is the integration of several systems in an environmentally friendly technology of the photosynthetic microbial desalination cell (PMDC). The aim of this study is to assess the process characterisation of an algae-based PMDC, which was loaded with a high-strength mixture of human feces and urine (HFS). The PMDC was also able to efficiently remove COD and total nitrogen of HFS by 50% and 94%, respectively. The maximum power density, voltage, and desalination efficiency of 362.5 mW/m², 175.2 mV, and 60% were accomplished. Adequate parameter adjustment led to a remarkable maximum of 2.25 g/L.d in the ion removal rate. In addition, an energy balance was governed showing that zero or positive net energy in PMDC is feasible by replacing the main energy consumers. Based on the results, this type of MDC had a high efficiency for simultaneous saline water desalination and HFS treatment, which makes it attractive for further studies of upscaling and its application in remote areas.

2.
Environ Technol ; 44(23): 3592-3604, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35416123

ABSTRACT

High concentrations of nutrients are observed in the effluent of different wastewater treatment plants, while additional costs of post-treatment systems and low-value sludge are the main reasons for releasing such effluents. The present study aims to introduce an increased procedure for simultaneous nutrient recovery and biomass production using an algae-based post-treatment technique. The procedure has been utilized by two well-known strains (Scenedesmus dimorphus and Chlorella vulgaris) cultivated in different N/P ratios (16, 62, and 108) and trace metals (0, 50%, and 100%) in a synthetic meat processing wastewater as a model to investigate effects of the factors on microalgal cultivation and nutrient removal. Pareto statistical analysis and Multi Response Surface methodology were applied to determine the priority of factors and their optimum values, respectively. The unbalanced N/P ratio and lack of trace metals were introduced as two main reasons for the significant decrease of about 60% and 120% in nutrient removal and biomass production. The optimized procedure resulted in significant increases in the removal efficiencies where 90%, 83%, and 65% were achieved for ammonium, nitrate, and phosphate, respectively. Moreover, a 72% increase in biomass production was reported in the optimal points. The results of the Pareto analysis highlighted the significant superiority (about two times) of the trace metals in removal efficiencies. Finally, experimental data has also been modelled by Verhulst logistic model that successfully described the microalgae growth. This procedure showed promising results of microalgal systems to supersede the conventional post-treatment systems.


Subject(s)
Chlorella vulgaris , Microalgae , Trace Elements , Kinetics , Phosphates
3.
Environ Technol ; 43(9): 1352-1358, 2022 Apr.
Article in English | MEDLINE | ID: mdl-32975486

ABSTRACT

Domestic, agricultural and industrial water activities lead to organic and inorganic pollution of the environment. Biotreatment of municipal wastewater with the potential production of biomass is a valuable feature of microalgae. In this study we evaluated the effects of wavelength and light intensity on phosphate and ammonium removal on the one hand, and biomass and protein production on the other hand by Spirulina platensis in municipal wastewater treatment under semi batch cultivation. S. platensis was inoculated at 40% in artificial wastewater open pond system. Red, blue and purple light with 3800, 4800 and 5800 lux light intensity under 12 h light and 12 h darkness were investigated. Cultivation was conducted in semi-batch conditions; after four days cultivation, one third of the culture was replaced with fresh medium. The highest biomass and protein concentrations were observed under blue light at 5800 lux light intensity, 5.45 and 3 g/l respectively cumulatively; while the highest amount of phosphate and ammonium removal were about 145 and 218 mg/l under purple light at 5800 lux intensity, respectively. The amounts of biomass and protein produced, as well as phosphate and ammonium removed, are therefore impacted by wavelength, light intensity, results show that light intensity and wavelength can be customized to reach on the one hand the highest biomass and protein production, and on the other hand to maximize the removal of phosphorous and ammonium.


Subject(s)
Microalgae , Biomass , Nitrogen , Phosphates , Wastewater
4.
Environ Technol ; 36(1-4): 377-85, 2015.
Article in English | MEDLINE | ID: mdl-25347218

ABSTRACT

In this research work, a synthetic water super absorbent polymer was included in the bed of a perlite-based biofilter for the removal of ethanol from air. The performance of this biofilter was compared with the performance of a control perlite-based biofilter lacking the water super absorbent. With the empty bed residence time of 2 min, both biofilters were able to remove more than 90% of the entering pollutant with the concentration of 1 g /m3, when regular moistening was applied. After last irrigation on day 23, the performance of the control biofilter was unchanged until day 35. From day 36 onwards, the control biofilter lost its activity gradually and became totally inactive on day 45. The performance of the super absorbent containing biofilter, however, was unchanged until day 58 before starting to lose its activity. A mechanistic model was developed to describe the performance of a biofilter under drying effects. The model could predict the trends of experimental results reasonably well. The model was also applied to predict the trends of experimental data from a published paper on the removal of hexane in a perlite/super absorbent containing biofilter.


Subject(s)
Bacterial Physiological Phenomena , Ethanol/isolation & purification , Membranes, Artificial , Models, Biological , Polymers/chemistry , Ultrafiltration/instrumentation , Adsorption , Biodegradation, Environmental , Computer Simulation , Equipment Design , Equipment Failure Analysis , Ethanol/chemistry , Industrial Waste/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...