Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 21(11): e3002367, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37967106

ABSTRACT

In mammals, O2 and CO2 levels are tightly regulated and are altered under various pathological conditions. While the molecular mechanisms that participate in O2 sensing are well characterized, little is known regarding the signaling pathways that participate in CO2 signaling and adaptation. Here, we show that CO2 levels control a distinct cellular transcriptional response that differs from mere pH changes. Unexpectedly, we discovered that CO2 regulates the expression of cholesterogenic genes in a SREBP2-dependent manner and modulates cellular cholesterol accumulation. Molecular dissection of the underlying mechanism suggests that CO2 triggers SREBP2 activation through changes in endoplasmic reticulum (ER) membrane cholesterol levels. Collectively, we propose that SREBP2 participates in CO2 signaling and that cellular cholesterol levels can be modulated by CO2 through SREBP2.


Subject(s)
Carbon Dioxide , Cholesterol , Animals , Cholesterol/metabolism , Signal Transduction , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Mammals/metabolism
2.
Acta Physiol (Oxf) ; 234(2): e13770, 2022 02.
Article in English | MEDLINE | ID: mdl-34984824

ABSTRACT

In mammals, physiology and metabolism are shaped both by immediate and anticipatory responses to environmental changes through the myriad of molecular mechanisms. Whilst the former is mostly mediated through different acute signalling pathways the latter is primarily orchestrated by the circadian clock. Oxygen is vital for life and as such mammals have evolved different mechanisms to cope with changes in oxygen levels. It is widely accepted that oxygen sensing through the HIF-1 signalling pathway is paramount for the acute response to changes in oxygen levels. Circadian clocks are molecular oscillators that control 24 hours rhythms in various aspects of physiology and behaviour. Evidence emerging in recent years points towards pervasive molecular and functional interactions between these two pathways on multiple levels. Daily oscillations in oxygen levels are circadian clock-controlled and can reset the clock through HIF-1. Furthermore, the circadian clock appears to modulate the hypoxic response. We review herein the literature related to the crosstalk between the circadian clockwork and the oxygen-signalling pathway in mammals at the molecular and physiological level both under normal and pathologic conditions.


Subject(s)
Circadian Clocks , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Mammals/physiology , Oxygen , Signal Transduction
3.
PLoS Biol ; 19(12): e3001492, 2021 12.
Article in English | MEDLINE | ID: mdl-34968386

ABSTRACT

Rhythmicity of biological processes can be elicited either in response to environmental cycles or driven by endogenous oscillators. In mammals, the circadian clock drives about 24-hour rhythms of multitude metabolic and physiological processes in anticipation to environmental daily oscillations. Also at the intersection of environment and metabolism is the protein kinase-AKT. It conveys extracellular signals, primarily feeding-related signals, to regulate various key cellular functions. Previous studies in mice identified rhythmicity in AKT activation (pAKT) with elevated levels in the fed state. However, it is still unknown whether rhythmic AKT activation can be driven through intrinsic mechanisms. Here, we inspected temporal changes in pAKT levels both in cultured cells and animal models. In cultured cells, pAKT levels showed circadian oscillations similar to those observed in livers of wild-type mice under free-running conditions. Unexpectedly, in livers of Per1,2-/- but not of Bmal1-/- mice we detected ultradian (about 16 hours) oscillations of pAKT levels. Importantly, the liver transcriptome of Per1,2-/- mice also showed ultradian rhythms, corresponding to pAKT rhythmicity and consisting of AKT-related genes and regulators. Overall, our findings reveal ultradian rhythms in liver gene expression and AKT phosphorylation that emerge in the absence of environmental rhythms and Per1,2-/- genes.


Subject(s)
Gene Expression Regulation/genetics , Proto-Oncogene Proteins c-akt/metabolism , Ultradian Rhythm/genetics , Animals , Cells, Cultured , Circadian Clocks/genetics , Gene Expression/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Transcription Factors/metabolism , Transcriptome/genetics
4.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34426495

ABSTRACT

Exercise and circadian biology are closely intertwined with physiology and metabolism, yet the functional interaction between circadian clocks and exercise capacity is only partially characterized. Here, we tested different clock mutant mouse models to examine the effect of the circadian clock and clock proteins, namely PERIODs and BMAL1, on exercise capacity. We found that daytime variance in endurance exercise capacity is circadian clock controlled. Unlike wild-type mice, which outperform in the late compared with the early part of their active phase, PERIODs- and BMAL1-null mice do not show daytime variance in exercise capacity. It appears that BMAL1 impairs and PERIODs enhance exercise capacity in a daytime-dependent manner. An analysis of liver and muscle glycogen stores as well as muscle lipid utilization suggested that these daytime effects mostly relate to liver glycogen levels and correspond to the animals' feeding behavior. Furthermore, given that exercise capacity responds to training, we tested the effect of training at different times of the day and found that training in the late compared with the early part of the active phase improves exercise performance. Overall, our findings suggest that clock proteins shape exercise capacity in a daytime-dependent manner through changes in liver glycogen levels, likely due to their effect on animals' feeding behavior.


Subject(s)
CLOCK Proteins/physiology , Exercise Tolerance/physiology , Physical Conditioning, Animal/physiology , ARNTL Transcription Factors/physiology , Animals , CLOCK Proteins/genetics , Feeding Behavior , Female , Light , Liver Glycogen/metabolism , Male , Mice , Mice, Inbred C57BL , Muscles/metabolism , Mutation , Period Circadian Proteins/physiology , Photoperiod , Sex Characteristics , Time Factors
5.
Nat Metab ; 3(6): 829-842, 2021 06.
Article in English | MEDLINE | ID: mdl-34059820

ABSTRACT

The mammalian circadian system consists of a central clock in the brain that synchronizes clocks in the peripheral tissues. Although the hierarchy between central and peripheral clocks is established, little is known regarding the specificity and functional organization of peripheral clocks. Here, we employ altered feeding paradigms in conjunction with liver-clock mutant mice to map disparities and interactions between peripheral rhythms. We find that peripheral clocks largely differ in their responses to feeding time. Disruption of the liver-clock, despite its prominent role in nutrient processing, does not affect the rhythmicity of clocks in other peripheral tissues. Yet, unexpectedly, liver-clock disruption strongly modulates the transcriptional rhythmicity of peripheral tissues, primarily on daytime feeding. Concomitantly, liver-clock mutant mice exhibit impaired glucose and lipid homeostasis, which are aggravated by daytime feeding. Overall, our findings suggest that, upon nutrient challenge, the liver-clock buffers the effect of feeding-related signals on rhythmicity of peripheral tissues, irrespective of their clocks.


Subject(s)
Circadian Clocks/physiology , Circadian Rhythm/physiology , Energy Intake , Liver/physiology , Animals , Brain/physiology , Energy Metabolism , Feeding Behavior , Gene Expression Regulation , Glucose/metabolism , Lipid Metabolism , Mice , Mutation , Organ Specificity , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Signal Transduction
6.
STAR Protoc ; 2(1): 100331, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33598660

ABSTRACT

There is growing interest in medicine and sports in uncovering exercise modifiers that enhance or limit exercise capacity. Here, we detail a protocol for testing the daytime effect on running capacity in mice using a moderate intensity treadmill effort test. Instructions for dissecting soleus, gastrocnemius plantaris, and quadriceps muscles for further analysis are provided as well. This experimental setup is optimized for addressing questions regarding the involvement of daytime and circadian clocks in regulating exercise capacity. For complete details on the use and execution of this protocol, please refer to Ezagouri et al. (2019).


Subject(s)
Exercise Tolerance , Microdissection , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Male , Mice
7.
Am J Clin Nutr ; 110(2): 316-329, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31152545

ABSTRACT

BACKGROUND: Aronia melanocarpa is a rich source of (poly)phenols. Previous research has demonstrated that these berries may provide cardiovascular health benefits in high-risk populations. However, very few studies have investigated the effects of daily consumption of dietary achievable amounts of the berries in healthy subjects. OBJECTIVES: The aim of this study was to investigate the effects of aronia berries on vascular function and gut microbiota composition in a healthy population. METHODS: A double-blind, placebo-controlled, parallel designed study was conducted in 66 healthy men randomly allocated to consume a (poly)phenol-rich extract (116 mg, 75 g berries), a whole fruit powder (12 mg, 10 g berries), or placebo (maltodextrin) for 12 wk. Flow-mediated dilation (FMD), arterial stiffness, blood pressure, heart rate, and serum biochemistry were assessed. Plasma (poly)phenol metabolites were analyzed by LC-MS. Gut microbiota composition was determined via 16S rRNA sequencing in stool samples. RESULTS: Consumption of aronia whole fruit and extract powder for 12 wk led to a significant increase in FMD over control of 0.9% ± 0.4% (95% CI: 0.13%, 1.72%) and 1.2% ± 0.4% (95% CI: 0.36%, 1.97%), respectively. Acute improvements in FMD were also observed 2 h after consumption of aronia extract on day 1 (1.1% ± 0.3%, P = 0.003) and 12 wk later (1.5% ± 0.4%, P = 0.0001). Circulating plasma phenolic metabolites increased upon consumption of the aronia treatments. Although no changes were found in gut microbiota diversity, consumption of aronia extract increased the growth of Anaerostipes (+10.6%, P = 0.01), whereas aronia whole fruit showed significant increases in Bacteroides (+193%, P = 0.01). Correlation analysis identified significant associations between changes in FMD, aronia-derived phenolic metabolites, and specific gut microbial genera. CONCLUSIONS: In healthy men, consumption of aronia berry (poly)phenols improved endothelial function and modulated gut microbiota composition, indicating that regular aronia consumption has the potential to maintain cardiovascular health in individuals at low risk of cardiovascular disease. This trial was registered at CLINICALTRIALs.gov as NCT03041961.


Subject(s)
Fruit/chemistry , Gastrointestinal Microbiome/drug effects , Photinia/chemistry , Polyphenols/pharmacology , Vasodilation/drug effects , Adolescent , Adult , Double-Blind Method , Feces/microbiology , Humans , Male , Polyphenols/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...