Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874582

ABSTRACT

CD70 is an attractive target for chimeric antigen receptor (CAR) T-cell therapy for the treatment of both solid and liquid malignancies. However, the functionality of CD70-specific CAR T cells is modest. We optimized a CD70-specific VHH-based CAR (nanoCAR). We evaluated the nanoCARs in clinically relevant models in vitro, using co-cultures of CD70-specific nanoCAR T cells with malignant rhabdoid tumor organoids, and in vivo, using a diffuse large B-cell lymphoma (DLBCL) patient-derived xenograft (PDX) model. Whereas the nanoCAR T cells were highly efficient in organoid co-cultures, they showed only modest efficacy in the PDX model. We determined that fratricide was not causing this loss in efficacy, rather CD70 interaction in cis with the nanoCAR induced exhaustion. Knocking out CD70 in nanoCAR T cells using CRISPR/Cas9, resulted in dramatically enhanced functionality in the DLBCL PDX model. Through single-cell transcriptomics, we obtained evidence that CD70 knock out (KO) CD70-specific nanoCAR T cells were protected from antigen-induced exhaustion. In addition, we demonstrated that WT CD70-specific nanoCAR T cells already exhibited signs of exhaustion shortly after production. Their gene signature strongly overlapped with gene signatures of exhausted CAR T cells. On the other hand, the gene signature of KO CD70-specific nanoCAR T cells overlapped with the gene signature of CAR T-cell infusion products that led to complete responses in chronic lymphatic leukemia patients. Our data show that CARs targeting endogenous T-cell antigens negatively affect CAR T-cell functionality by inducing an exhausted state, which can be overcome by knocking out the specific target.

2.
Exp Hematol Oncol ; 13(1): 59, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831452

ABSTRACT

Type I interferon (IFN) is a potent antitumoral drug, with an important history in the treatment of hematologic malignancies. However, its pleiotropic nature leads to severe dose-limiting toxicities that blunt its therapeutic potential. To achieve selective targeting of specific immune or tumor cells, AcTakines (Activity-on-Target Cytokines), i.e., immunocytokines utilizing attenuated cytokines, and clinically optimized A-Kines™ were developed. In syngeneic murine models, the CD20-targeted murine IFNα2-based AcTaferons (AFNs) have demonstrated clear antitumoral effects, with excellent tolerability. The current study explores the antitumoral potential of the humanized huCD20-Fc-AFN in 5 different humanized patient derived xenograft (PDX) models of huCD20+ aggressive B non-Hodgkin lymphomas (B-NHLs). The huCD20-Fc-AFN consists of a huCD20-specific single-domain antibody (VHH) linked through a heterodimeric 'knob-in-hole' human IgG1 Fc molecule to an attenuated huIFNα2 sequence. An in vitro targeting efficacy of up to 1.000-fold could be obtained, without detectable in vivo toxicities, except for selective (on-target) and reversible B cell depletion. Treatment with huCD20-Fc-AFN significantly increased the median overall survival (mOS) in both non-humanized (mOS 31 to 45 days; HR = 0.26; p = 0.001), and humanized NSG/NOG mice (mOS 34 to 80 days; HR = 0.37; p < 0.0001). In humanized mice, there was a trend for increased survival when compared to equimolar rituximab (mOS 49 to 80 days; HR = 0.73; p = 0.09). The antitumoral effects of huCD20-Fc-AFN were partly due to direct effects of type I IFN on the tumor cells, but additional effects via the human immune system are essential to obtain long-term remissions. To conclude, huCD20-Fc-AFN could provide a novel therapeutic strategy for huCD20-expressing aggressive B-NHLs.

3.
Front Oncol ; 12: 824704, 2022.
Article in English | MEDLINE | ID: mdl-35299736

ABSTRACT

We determined first- and second-line regimens, including hematopoietic stem cell transplantations, in all diffuse large B cell lymphoma (DLBCL) patients aged ≥20 yr (n = 1,888), registered at the Belgian Cancer Registry (2013-2015). Treatments were inferred from reimbursed drugs, and procedures registered in national health insurance databases. This real-world population-based study allows to assess patients usually excluded from clinical trials such as those with comorbidities, other malignancies (12%), and advanced age (28% are ≥80 yr old). Our data show that the majority of older patients are still started on first-line regimens with curative intent and a substantial proportion of them benefit from this approach. First-line treatments included full R-CHOP (44%), "incomplete" (R-)CHOP (18%), other anthracycline (14%), non-anthracycline (9%), only radiotherapy (3%), and no chemo-/radiotherapy (13%), with significant variation between age groups. The 5-year overall survival (OS) of all patients was 56% with a clear influence of age (78% [20-59 yr] versus 16% [≥85 yr]) and of the type of first-line treatments: full R-CHOP (72%), other anthracycline (58%), "incomplete" (R-)CHOP (47%), non-anthracycline (30%), only radiotherapy (30%), and no chemo-/radiotherapy (9%). Second-line therapy, presumed for refractory (7%) or relapsed disease (9%), was initiated in 252 patients (16%) and was predominantly (71%) platinum-based. The 5-year OS after second-line treatment without autologous stem cell transplantation (ASCT) was generally poor (11% in ≥70 yr versus 17% in <70 yr). An ASCT was performed in 5% of treated patients (n = 82). The 5-year OS after first- or second-line ASCT was similar (69% versus 66%). After adjustment, multivariable OS analyses indicated a significant hazard ratio (HR) for, among others, age (HR 1.81 to 5.95 for increasing age), performance status (PS) (HR 4.56 for PS >1 within 3 months from incidence), subsequent malignancies (HR 2.50), prior malignancies (HR 1.34), respiratory and diabetic comorbidity (HR 1.41 and 1.24), gender (HR 1.25 for males), and first-line treatment with full R-CHOP (HR 0.41) or other anthracycline-containing regimens (HR 0.72). Despite inherent limitations, patterns of care in DLBCL could be determined using an innovative approach based on Belgian health insurance data.

5.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34406363

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive B cell lymphoma with poor long-term overall survival. Currently, MCL research and development of potential cures is hampered by the lack of good in vivo models. MCL is characterized by recurrent translocations of CCND1 or CCND2, resulting in overexpression of the cell cycle regulators cyclin D1 or D2, respectively. Here, we show, for the first time, that hematopoiesis-specific activation of cyclin D2 is sufficient to drive murine MCL-like lymphoma development. Furthermore, we demonstrate that cyclin D2 overexpression can synergize with loss of p53 to form aggressive and transplantable MCL-like lymphomas. Strikingly, cyclin D2-driven lymphomas display transcriptional, immunophenotypic, and functional similarities with B1a B cells. These MCL-like lymphomas have B1a-specific B cell receptors (BCRs), show elevated BCR and NF-κB pathway activation, and display increased MALT1 protease activity. Finally, we provide preclinical evidence that inhibition of MALT1 protease activity, which is essential for the development of early life-derived B1a cells, can be an effective therapeutic strategy to treat MCL.


Subject(s)
Cyclin D2/genetics , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Allografts , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cyclin D2/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, Mantle-Cell/drug therapy , Mice, Inbred C57BL , Mice, Transgenic , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Neoplastic Cells, Circulating , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...