Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (116)2016 10 27.
Article in English | MEDLINE | ID: mdl-27842340

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), thought to occur as a result of autoimmune responses targeting myelin. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model of CNS autoimmune disease, and is typically induced via immunization with short peptides representing immunodominant CD4+ T cell epitopes of myelin proteins. However, B cells recognize unprocessed protein directly, and immunization with short peptide does not activate B cells that recognize the native protein. As recent clinical trials of B cell-depleting therapies in MS have suggested a role for B cells in driving disease in humans, there is an urgent need for animal models that incorporate B cell-recognition of autoantigen. To this end, we have generated a new fusion protein containing the extracellular domain of the mouse version of myelin oligodendrocyte glycoprotein (MOG) as well as N-terminal fusions of a His-tag for purification purposes and the thioredoxin protein to improve solubility (MOGtag). A tobacco etch virus (TEV) protease cleavage site was incorporated to allow the removal of all tag sequences, leaving only the pure MOG1-125 extracellular domain. Here, we describe a simple protocol using only standard laboratory equipment to produce large quantities of pure MOGtag or MOG1-125. This protocol consistently generates over 200 mg of MOGtag protein. Immunization with either MOGtag or MOG1-125 generates an autoimmune response that includes pathogenic B cells that recognize the native mouse MOG.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Myelin-Oligodendrocyte Glycoprotein , Animals , Humans , Mice , Multiple Sclerosis , Myelin-Associated Glycoprotein , T-Lymphocytes
2.
Front Immunol ; 6: 470, 2015.
Article in English | MEDLINE | ID: mdl-26441975

ABSTRACT

We characterized B cell infiltration of the spinal cord in a B cell-dependent spontaneous model of central nervous system (CNS) autoimmunity that develops in a proportion of mice with mutant T and B cell receptors specific for myelin oligodendrocyte glycoprotein. We found that, while males are more likely to develop disease, females are more likely to have a chronic rather than monophasic disease course. B cell infiltration of the spinal cord was investigated by histology and FACs. CD4(+) T cell infiltration was pervasive throughout the white and in some cases gray matter. B cells were almost exclusively restricted to the meninges, often in clusters reminiscent of those described in human multiple sclerosis. These clusters were typically found adjacent to white matter lesions and their presence was associated with a chronic disease course. Extensive investigation of these clusters by histology did not identify features of lymphoid follicles, including organization of T and B cells into separate zones, CD35(+) follicular dendritic cells, or germinal centers. The majority of cluster B cells were IgD(+) with little evidence of class switch. Consistent with this, B cells isolated from the spinal cord were of the naïve/memory CD38(hi) CD95(lo) phenotype. Nevertheless, they were CD62L(lo) and CD80(hi) compared to lymph node B cells suggesting that they were at least partly activated and primed to present antigen. Therefore, if meningeal B cells contribute to CNS pathology in autoimmunity, follicular differentiation is not necessary for the pathogenic mechanism.

3.
J Neuroimmunol ; 278: 73-84, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25595255

ABSTRACT

We develop a new fusion protein reagent (MOGtag), based on the extracellular domain of mouse myelin oligodendrocyte glycoprotein (MOG1-125), designed to induce autoimmune responses in mice that incorporates both T and B cell recognition of antigen. Reports of similar reagents, primarily based on foreign MOG proteins, rely largely on disease incidence and severity, with little analysis of the underlying immune response or pathology. We characterize the immune response and central nervous system autoimmune disease elicited by MOGtag in mice and find that it results in the formation of a T cell-dependent germinal center B cell response. Unlike immunization with the short MOG35-55 peptide, this response incorporated B cells able to recognize MOG protein. The autoimmune disease resulting from immunization with MOGtag was chronic with clear evidence of an ongoing immune response and active white and gray matter infiltration by T cells as well as formation of B cell clusters in the meninges. Interestingly, development of B cell clusters was not absolutely dependent on the ability of B cells to recognize MOG protein, as they were also present in mice immunized with short peptide and in mice with a mutant B cell receptor specific for an irrelevant antigen.


Subject(s)
Autoantigens/immunology , Autoimmunity/immunology , B-Lymphocytes/immunology , Central Nervous System/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Myelin-Associated Glycoprotein/immunology , Animals , Antigens, CD/metabolism , Disease Models, Animal , Dose-Response Relationship, Immunologic , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Myelin Sheath/metabolism , Myelin Sheath/pathology , Myelin-Associated Glycoprotein/toxicity , Peptides/chemistry , Peptides/immunology , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL