Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Pestic Biochem Physiol ; 199: 105803, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458661

ABSTRACT

Tobacco black shank (TBS) is a soil-borne fungal disease caused by Phytophthora nicotiana (P. nicotianae), significantly impeding the production of high-quality tobacco. Molybdenum (Mo), a crucial trace element for both plants and animals, plays a vital role in promoting plant growth, enhancing photosynthesis, bolstering antioxidant capacity, and maintaining ultrastructural integrity. However, the positive effect of Mo on plant biotic stress is little understood. This study delves into the inhibitory effects of Mo on P. nicotianae and seeks to unravel the underlying mechanisms. The results showed that 16.32 mg/L of Mo significantly inhibited mycelial growth, altered mycelial morphological structure, damaged mycelial cell membrane, and ultimately led to the leakage of cell inclusions. In addition, 0.6 mg/kg Mo applied in soil significantly reduced the severity of TBS. Mo increased photosynthetic parameters and photosynthetic pigment contents of tobacco leaves, upregulated expression of NtPAL and NtPPO resistance genes, as well as improved activities of SOD, POD, CAT, PPO, and PAL in tobacco plants. Furthermore, Mo could regulate nitrogen metabolism and amino acids metabolism to protect tobacco plants against P. nicotianae infection. These findings not only present an ecologically sound approach to control TBS but also contribute valuable insights to the broader exploration of the role of microelements in plant disease management.


Subject(s)
Nicotiana , Phytophthora , Molybdenum/pharmacology , Soil , Plant Diseases/microbiology
2.
J Agric Food Chem ; 72(9): 5073-5087, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38377432

ABSTRACT

Tobacco black shank (TBS), caused by Phytophthora nicotianae, poses a significant threat to tobacco plants. Selenium (Se), recognized as a beneficial trace element for plant growth, exhibited inhibitory effects on P. nicotianae proliferation, disrupting the cell membrane integrity. This action reduced the energy supply and hindered hyphal transport through membrane proteins, ultimately inducing hyphal apoptosis. Application of 8 mg/L Se through leaf spraying resulted in a notable decrease in TBS incidence. Moreover, Se treatment preserved chloroplast structure, elevated chitinase activities, ß-1,3-GA, polyphenol oxidase, phenylalanine ammonia-lyase, and increased hormonal content. Furthermore, Se enhanced flavonoid and sugar alcohol metabolite levels while diminishing amino acid and organic acid content. This shift promoted amino acid degradation and flavonoid synthesis. These findings underscore the potential efficacy of Se in safeguarding tobacco and potentially other plants against P. nicotianae.


Subject(s)
Phytophthora , Selenium , Selenium/pharmacology , Nicotiana , Cell Membrane , Energy Metabolism , Amino Acids/pharmacology , Flavonoids/pharmacology , Plant Diseases
3.
J Hazard Mater ; 461: 132641, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37797574

ABSTRACT

Chromium (Cr) is a hazardous heavy metal that negatively affects animals and plants. The micronutrients selenium (Se) and molybdenum (Mo) have been widely shown to alleviate heavy metal toxicity in plants. However, the molecular mechanism of Cr chelation on the cell wall by combined treatment with Se and Mo has not been reported. Therefore, this study aimed to explore the effects of Se-Mo interactions on the subcellular distribution of Cr (50 µM) and on cell wall composition, structure, functional groups and Cr content, in addition to performing a comprehensive analysis of the transcriptome. Our results showed that the cell walls of shoots and roots accumulated 51.0% and 65.0% of the Cr, respectively. Furthermore, pectin in the cell wall bound 69.5%/90.2% of the Cr in the shoots/roots. Se-Mo interactions upregulated the expression levels of related genes encoding galacturonosyltransferase (GAUT), UTP-glucose-1-phosphate uridylyltransferase (UGP), and UDP-glucose-4-epimerase (GALE), involved in polysaccharide biosynthesis, thereby increasing pectin and cellulose levels. Moreover, combined treatment with Se and Mo increased the lignin content and cell wall thickness by upregulating the expression levels of genes encoding cinnamyl alcohol dehydrogenase (CAD), peroxidase (POX) and phenylalanine amino-lyase (PAL), involved in lignin biosynthesis. Fourier-transform infrared (FTIR) spectroscopy results showed that Se + Mo treatment (in combination) increased the number of carboxylic acid groups (-COOH) groups, thereby enhancing the Cr chelation ability. The results not only elucidate the molecular mechanism of action of Se-Mo interactions in mitigating Cr toxicity but also provide new insights for phytoremediation and food safety.


Subject(s)
Selenium , Selenium/pharmacology , Selenium/metabolism , Molybdenum/toxicity , Nicotiana/genetics , Nicotiana/metabolism , Chromium/metabolism , Lignin , Pectins/pharmacology , Cell Wall/metabolism
4.
J Hazard Mater ; 457: 131777, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37290356

ABSTRACT

Nicotine and nornicotine are all toxic alkaloids involved in the formation of carcinogenic tobacco-specific nitrosamines. Microbes play an important role in removing these toxic alkaloids and their derivatives from tobacco-polluted environments. By now, microbial degradation of nicotine has been well studied. However, limited information is available on the microbial catabolism of nornicotine. In the present study, a nornicotine-degrading consortium was enriched from a river sediment sample and characterized by metagenomic sequencing using a combination of Illumina and Nanopore technologies. The metagenomic sequencing analysis demonstrated that Achromobacter, Azospirillum, Mycolicibacterium, Terrimonas, and Mycobacterium were the dominant genera in the nornicotine-degrading consortium. A total of 7 morphologically distinct bacterial strains were isolated from the nornicotine-degrading consortium. These 7 bacterial strains were characterized by whole genome sequencing and examined for their ability to degrade nornicotine. Based on a combination of 16 S rRNA gene similarity comparisons, 16 S rRNA gene-based phylogenetic analysis, and ANI analysis, the accurate taxonomies of these 7 isolated strains were identified. These 7 strains were identified as Mycolicibacterium sp. strain SMGY-1XX, Shinella yambaruensis strain SMGY-2XX, Sphingobacterium soli strain SMGY-3XX, Runella sp. strain SMGY-4XX, Chitinophagaceae sp. strain SMGY-5XX, Terrimonas sp. strain SMGY-6XX, Achromobacter sp. strain SMGY-8XX. Among these 7 strains, Mycolicibacterium sp. strain SMGY-1XX, which has not been reported previously to have the ability to degrade nornicotine or nicotine, was found to be capable of degrading nornicotine, nicotine as well as myosmine. The degradation intermediates of nornicotine and myosmine by Mycolicibacterium sp. strain SMGY-1XX were determined and the nornicotine degradation pathway in strain SMGY-1XX was proposed. Three novel intermediates, myosmine, pseudooxy-nornicotine, and γ-aminobutyrate, were identified during the nornicotine degradation process. Further, the most likely candidate genes responsible for nornicotine degradation in Mycolicibacterium sp. strain SMGY-1XX were identified by integrating genomic analysis, transcriptomic analysis, and proteomic analysis. The findings in this study will help to expand our understanding on the microbial catabolism of nornicotine and nicotine and provide new insights into the nornicotine degradation mechanism by consortia and pure culture, laying a foundation for the application of strain SMGY-1XX for the removal, biotransformation, or detoxification of nornicotine.


Subject(s)
Alkaloids , Nicotine , Phylogeny , Multiomics , Proteomics , Biodegradation, Environmental , Alkaloids/metabolism , Nicotiana/metabolism
5.
J Hazard Mater ; 452: 131272, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37003006

ABSTRACT

Selenium (Se) is an essential micronutrient for humans and a beneficial element for plants. However, high Se doses always exhibit hazardous effects. Recently, Se toxicity in plant-soil system has received increasing attention. This review will summarize (1) Se concentration in soils and its sources, (2) Se bioavailability in soils and influencing factors, (3) mechanisms on Se uptake and translocation in plants, (4) toxicity and detoxification of Se in plants and (5) strategies to remediate Se pollution. High Se concentration mainly results from wastewater discharge and industrial waste dumping. Selenate (Se [VI]) and selenite (Se [IV]) are the two primary forms absorbed by plants. Soil conditions such as pH, redox potential, organic matter and microorganisms will influence Se bioavailability. In plants, excessive Se will interfere with element uptake, depress photosynthetic pigment biosynthesis, generate oxidative damages and cause genotoxicity. Plants employ a series of strategies to detoxify Se, such as activating antioxidant defense systems and sequestrating excessive Se in the vacuole. In order to alleviate Se toxicity to plants, some strategies can be applied, including phytoremediation, OM remediation, microbial remediation, adsorption technique, chemical reduction technology and exogenous substances (such as Methyl jasmonate, Nitric oxide and Melatonin). This review is expected to expand the knowledge of Se toxicity/detoxicity in soil-plant system and offer valuable insights into soils Se pollution remediation strategies.


Subject(s)
Selenium , Soil , Humans , Soil/chemistry , Selenium/toxicity , Biodegradation, Environmental , Selenic Acid , Selenious Acid , Plants
6.
Ecotoxicol Environ Saf ; 248: 114312, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36455352

ABSTRACT

Chromium (Cr) is a harmful heavy metal that poses a serious threat to plants and animals. Selenium (Se) and molybdenum (Mo) are two beneficial elements for plant growth and resistance. However, their interactive effects on Cr uptake and distribution are poorly understood. Therefore, a hydroponics experiment was conducted to explore the effects of the use of Se and Mo alone and simultaneously on mitigating Cr toxicity. In this study, Nicotiana tabacum L. seedlings were exposed to control, 50 µM Cr, 50 µM Cr + 2 µM Se, 50 µM Cr + 1 µM Mo, or 50 µM Cr + 2 µM Se + 1 µM Mo in Hoagland solution. After 2 weeks, the plant biomass, Cr, Se and Mo contents, photosynthesis, leaf ultrastructure, antioxidant system, subcellular distribution and associated gene expression in Nicotiana tabacum L. were determined. The results showed that simultaneous use of Se and Mo promoted tobacco growth under Cr stress, as evidenced by reducing reactive oxygen species (ROS) content and reducing Cr translocation factor (TF) and inducing a 51.3% reduction in Cr content in shoots. Additionally, Se-Mo interactions increased the levels of glutathione (GSH) and phytochelatin (PC) and the distribution of Cr in the cell walls and organelles. Furthermore, the relative expression of PCS1 was upregulated, while those of NtST1 and MSN1 were downregulated. The results concluded that the simultaneous use of Se and Mo effectively alleviated Cr toxicity in Nicotiana tabacum L., which not only offers an efficient way for crops to resist Cr toxicity but also provides evidence for the benefit of Se combined with Mo.


Subject(s)
Selenium , Animals , Selenium/pharmacology , Molybdenum/pharmacology , Nicotiana , Chromium/toxicity , Biological Transport , Glutathione
7.
J Colloid Interface Sci ; 582(Pt B): 598-609, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32911408

ABSTRACT

A convenient and efficient method to fabricate isolated Fe single-atom catalysts deposited on Myriophyllum aquaticum-based biochar (ISA-Fe/MC) is reported for peroxymonosulfate-based organics degradation. Firstly, the Fe nanoparticles anchored on the hierarchical porous biochar (nano-Fe/MC) can be obtained by utilizing K2FeO4 as a synchronous activation and graphitization agent. Subsequently, ISA-Fe/MC was achieved by HCl etching of nano-Fe/MC to remove the excess Fe nanoparticles. Compared with nano-Fe/MC, ISA-Fe/MC demonstrated outperformed catalytic capacity towards PMS activation for phenol degradation. The combination of super high surface area, hierarchical porous structure, graphitization structure and atomically dispersed Fe species should be responsible for prominent catalytic oxidation ability and outstanding resistance to common anions and humic acid. Based on the chemical scavengers, EPR experiments and electrochemistry tests, the SO4•- dominated radical degradation pathway for nano-Fe/MC and electron transfer reigned non-radical degradation pathway for ISA-Fe/MC was revealed. In contrast to nano-Fe/MC, density functional theory calculations demonstrated the enhanced density of states around Fermi level in ISA-Fe/MC meaning the increased catalytic performance and more electron transfer between single-atom Fe to adjacent graphitic C and N which could serve as electron transfer channel for PMS activation.

8.
Ecotoxicol Environ Saf ; 208: 111412, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33039872

ABSTRACT

Cadmium (Cd) is a severely toxic and carcinogenic heavy metal. Cigarette smoking is one of the major source of Cd exposure in humans. Nicotiana tabacum is primarily a leaf Cd accumulator, while Nicotiana rustica is a root Cd accumulator among Nicotiana species. However, little is known about the mechanisms of differential Cd translocation and accumulation in Nicotiana. To find the key factors, Cd concentration, Cd chemical forms, and transcriptome analysis were comparatively studied between N. tabacum and N. rustica under control or 10 µM Cd stress. The leaf/root Cd concentration ratio of N. tabacum was 2.26 and that of N. rustica was 0.14. The Cd concentration in xylem sap of N. tabacum was significantly higher than that of N. rustica. The root of N. tabacum had obviously higher proportion of ethanol extractable Cd (40%) and water extractable Cd (16%) than those of N. rustica (16% and 6%). Meanwhile the proportion of sodium chloride extracted Cd in N. rustica (71%) was significantly higher than that in N. tabacum (30%). A total of 30710 genes expressed differentially between the two species at control, while this value was 30,294 under Cd stress, among which 27,018 were collective genes, manifesting the two species existed enormous genetic differences. KEGG pathway analysis showed the phenylpropanoid biosynthesis pathway was overrepresented between the two species under Cd stress. Several genes associated with pectin methylesterase, suberin and lignin synthesis, and heavy metal transport were discovered to be differential expressed genes between two species. The results suggested that the higher accumulation of Cd in the leaf of N. tabacum depends on a comprehensive coordination of Cd transport, including less cell wall binding, weaker impediment by the Casparian strip, and efficient xylem loading.


Subject(s)
Cadmium/toxicity , Nicotiana/physiology , Transcriptome , Cell Wall/metabolism , Gene Expression Profiling , Humans , Metals, Heavy/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Nicotiana/metabolism , Xylem/metabolism
9.
Front Plant Sci ; 11: 556, 2020.
Article in English | MEDLINE | ID: mdl-32477386

ABSTRACT

Chilling is a major abiotic factor limiting the growth, development, and productivity of plants. ß-aminobutyric acid (BABA), a new environmentally friendly agent, is widely used to induce plant resistance to biotic and abiotic stress. Calcium, as a signaling substance, participates in various physiological activities in cells and plays a positive role in plant defense against cold conditions. In this study, we used tobacco as a model plant to determine whether BABA could alleviate chilling stress and further to explore the relationship between BABA and Ca2+. The results showed that 0.2 mM BABA significantly reduced the damage to tobacco seedlings from chilling stress, as evidenced by an increase in photosynthetic pigments, the maintenance of cell structure, and upregulated expression of NtLDC1, NtERD10B, and NtERD10D. Furthermore, 0.2 mM BABA combined with 10 mM Ca2+ increased the fresh and dry weights of both roots and shoots markedly. Compared to that with single BABA treatment, adding Ca2+ reduced cold injury to the plant cell membrane, decreased ROS production, and increased antioxidant enzyme activities and antioxidant contents. The combination of BABA and Ca2+ also improved abscisic acid and auxin contents in tobacco seedlings under chilling stress, whereas ethylene glycol-bis (ß-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) reversed the effects of BABA. These findings suggested that BABA enhances the cold tolerance of tobacco and is closely related to the state of Ca2+ signaling.

10.
Sci Rep ; 10(1): 2360, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32047243

ABSTRACT

To date, blaNDM and blaKPC genes have been found predominantly in clinical settings around the world. In contrast, bacteria harbouring these two genes from natural environments are relatively less well studied compared to those found in clinical settings. In this study, a carbapenem-resistant Raoultella ornithinolytica strain, WLK218, was isolated from urban river sediment in Zhengzhou City, Henan Province, China. This isolate was subjected to PCR and antimicrobial susceptibility testing. PCR results showed that this isolate was positive for both the blaNDM-1 and blaKPC-2 genes. The antimicrobial susceptibility testing results showed that this isolate exhibited resistance or intermediate resistance to all the antibiotics tested except for streptomycin (susceptible) and cefepime (susceptible-dose dependent). The complete genome sequence of the WLK218 isolate was then determined by using a combination of the PacBio and Illumina sequencing technologies. The de novo assembly of the genome generated one chromosome and six plasmids. Among the six plasmids, the blaNDM-1 gene was carried on the IncX3 plasmid pWLK-NDM, while the blaKPC-2 gene was located on the untypeable plasmid pWLK-KPC. This is the first report of an environmental Raoultella ornithinolytica isolate co-harbouring the blaNDM-1 and blaKPC-2 genes.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Bacterial , Enterobacteriaceae/genetics , Genome, Bacterial , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Cefepime/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Rivers/microbiology , Streptomycin/pharmacology
11.
Water Res ; 111: 81-91, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28056397

ABSTRACT

In this study, five classes of antibiotic resistance genes (ARGs) were quantified in sediment samples of Haihe River, China, with abundance ranging from 1.39 × 104 to 1.58 × 1010 copies/g dry weight. Meanwhile, antibiotic resistant conjugative plasmids were also isolated from these samples through filter mating assays. In total, 202 transconjugants were isolated and tested for their antibiotic resistance phenotypes, among which 26 different types of conjugative plasmids were observed. The majority of these plasmids showed a multi-resistant phenotype and the most prevalent resistance was tetracycline resistance and sulfonamide resistance. Furthermore, we tested the transfer frequencies of these plasmids, determined their genotypes and then compared the plasmid-borne ARGs with their corresponding abundance in Haihe River. Most of the isolated plasmids exhibited high transfer frequencies to the recipient strain Escherichia coli J53. Plasmids isolated from the urban areas of Haihe River have higher transfer frequencies than the rural areas. Results from comprehensive analysis of plasmid genotypes, ARG abundance and plasmid sequencing confirmed that most of the plasmid-borne ARGs were the dominant genes in the Haihe River. Therefore, conjugative plasmids isolated from the Haihe River plays a crucial role in the dissemination, abundance and spatial distribution of ARGs in Haihe River, especially some unfrequent ARGs like blaGES-1. This study will help to increase the knowledge on the conjugative plasmid-mediated ARG propagation in the environment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Rivers , Drug Resistance, Microbial/genetics , Escherichia coli/drug effects , Plasmids/drug effects
12.
Gene ; 591(1): 74-79, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27374151

ABSTRACT

Antibiotic resistance is a serious problem in health care and is of widespread public concern. Conjugative plasmids are the most important vectors in the dissemination of antibiotic resistance genes. In this study, we determined the complete sequence of plasmid pNA6, a plasmid which was isolated from the sediments of Haihe River. This plasmid confers reduced susceptibility to ampicillin, erythromycin and sulfamethoxazole. The complete sequence of plasmid pNA6 was 52,210bp in length with an average G+C content of 52.70%. Plasmid pNA6 belongs to the IncU group by sequence queries against the GenBank database. This plasmid has a typical IncU backbone and shows the highest similarities with plasmid RA3 and plasmid pFBAOT6. Plasmid pNA6 carries a class 1 integron consisting of aacA4, ereA and dfrA1 genes. Moreover, plasmid pNA6 also harbors a blaTEM-1-containing complex structure which inserted into the replication region and maintenance region. This insertion site has never been found on other IncU plasmids. The sequencing of plasmid pNA6 will add new sequence information to IncU family plasmids and enhance our understanding of the plasticity of IncU family plasmids.


Subject(s)
DNA, Bacterial/genetics , Plasmids/genetics , Base Sequence , DNA, Circular/genetics , Integrons/genetics , Open Reading Frames/genetics
13.
PLoS One ; 11(5): e0154975, 2016.
Article in English | MEDLINE | ID: mdl-27152950

ABSTRACT

Plasmid pDTC28 was isolated from the sediments of Haihe River using E. coli CV601 (gfp-tagged) as recipient and indigenous bacteria from the sediment as donors. This plasmid confers reduced susceptibility to tetracycline and sulfamethoxazole. The complete sequence of plasmid pDTC28 was 61,503 bp in length with an average G+C content of 64.09%. Plasmid pDTC28 belongs to the IncP-1ß group by phylogenetic analysis. The backbones of plasmid pDTC28 and other IncP-1ß plasmids are very classical and conserved, whereas the accessory regions of these plasmids are diverse. A blaGES-5-like gene was found on the accessory region, and this blaGES-5-like gene contained 18 silent mutations and 7 missense mutations compared with the blaGES-5 gene. The mutations resulted in 7 amino acid substitutions in GES-5 carbapenemase, causing the loss of function of the blaGES-5-like gene on plasmid pDTC28 against carbapenems and even ß-lactams. The enzyme produced by the blaGES-5-like gene cassette may be a new variant of GES-type enzymes. Thus, the plasmid sequenced in this study will expand our understanding of GES-type ß-lactamases and provide insights into the genetic platforms used for the dissemination of GES-type genes.


Subject(s)
Escherichia coli/genetics , Plasmids , Geologic Sediments/microbiology , Mutation
14.
Front Microbiol ; 7: 188, 2016.
Article in English | MEDLINE | ID: mdl-26941718

ABSTRACT

Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one bla IMI-3-containing region and one type VI secretion system region. The bla IMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the bla IMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of bla IMI carbapenemase genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...