Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychopharmacology ; 45(2): 337-346, 2020 01.
Article in English | MEDLINE | ID: mdl-31202213

ABSTRACT

Memories do not persist in a permanent, static state but instead must be dynamically modified in response to new information. Although new memory formation is typically studied in a laboratory setting, most real-world associations are modifications to existing memories, particularly in the aging, experienced brain. To date, the field has lacked a simple behavioral paradigm that can measure whether original and updated information is remembered in a single test session. To address this gap, we have developed a novel memory updating paradigm, called the Objects in Updated Locations (OUL) task that is capable of assessing memory updating in a non-stressful task that is appropriate for both young and old rodents. We first show that young mice successfully remember both the original memory and the updated information in OUL. Next, we demonstrate that intrahippocampal infusion of the protein synthesis inhibitor anisomycin disrupts both the updated information and the original memory at test, suggesting that memory updating in OUL engages the original memory. To verify this, we used the Arc CatFISH technique to show that the OUL update session reactivates a largely overlapping set of neurons as the original memory. Finally, using OUL, we show that memory updating is impaired in aging, 18-m.o. mice. Together, these results demonstrate that hippocampal memory updating is impaired with aging and establish that the OUL paradigm is an effective, sensitive method of assessing memory updating in rodents.


Subject(s)
Aging/physiology , Aging/psychology , Memory Disorders/psychology , Memory/physiology , Recognition, Psychology/physiology , Animals , Male , Memory Disorders/physiopathology , Mice , Mice, Inbred C57BL
2.
Neuropsychopharmacology ; 42(6): 1284-1294, 2017 May.
Article in English | MEDLINE | ID: mdl-27924874

ABSTRACT

Histone acetylation is a fundamental epigenetic mechanism that is dynamically regulated during memory formation. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) compete to modulate histone acetylation, allowing for rapid changes in acetylation in response to a learning event. HDACs are known to be powerful negative regulators of memory formation, but it is not clear whether this function depends on HDAC enzymatic activity per se. Here, we tested whether the enzymatic activity of an individual Class I HDAC, HDAC3, has a role in fear memory formation in subregions of the hippocampus and amygdala. We found that fear conditioning drove expression of the immediate early genes cFos and Nr4a2 in the hippocampus, which coincided with reduced HDAC3 occupancy at these promoters. Using a dominant-negative, deacetylase-dead point mutant virus (AAV-HDAC3(Y298H)-v5), we found that selectively blocking HDAC3 deacetylase activity in either the dorsal hippocampus or basal nucleus of the amygdala enhanced context fear without affecting tone fear. Blocking HDAC3 activity in the lateral nucleus of the amygdala, on the other hand, enhanced tone, but not context fear memory. These results show for the first time that the enzymatic activity of HDAC3 functions to negatively regulate fear memory formation. Further, HDAC3 activity regulates different aspects of fear memory in the basal and lateral subregions of the amygdala. Thus, the deacetylase activity of HDAC3 is a powerful negative regulator of fear memory formation in multiple subregions of the fear circuit.


Subject(s)
Basolateral Nuclear Complex/physiology , Conditioning, Classical/physiology , Fear/physiology , Hippocampus/physiology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/physiology , Memory/physiology , Animals , Auditory Perception/drug effects , Auditory Perception/physiology , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Conditioning, Classical/drug effects , Fear/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Male , Memory/drug effects , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL