Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Jpn J Infect Dis ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945856

ABSTRACT

Persistent inflammation in chronic HIV infection may affect immune responses against SARS-CoV-2 infection. Plasma levels of multiple proinflammatory cytokines during acute SARS-CoV-2 infection were assessed in people with HIV (PWH) with effective cART. There were no significant differences in any of the tested cytokines between COVID-19 severity in PWH, while most of them were significantly higher in individuals with severe disease in HIV-uninfected individuals, suggesting that excess cytokines release by hyper-inflammatory responses does not occur in severe COVID-19 with HIV infection. The strong associations between the cytokines observed in HIV-uninfected individuals, especially between IFN-α/TNF-α and other cytokines, were lost in PWH. The steady state plasma levels of IP-10, ICAM-1, and CD62E were significantly higher in PWH, indicating that PWH are in an enhanced inflammatory state. Loss of the several inter-cytokine correlations were observed in in vitro LPS stimuli-driven cytokines production in PWH. These data suggest that inflammatory responses during SARS-CoV-2 infection in PWH are distinct from those in HIV-uninfected individuals, partially due to the underlying inflammatory state and/or impairment of innate immune cells.

2.
BMC Complement Med Ther ; 24(1): 59, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38281034

ABSTRACT

BACKGROUND: Cervical cancer is a major global health concern with a high prevalence in low- and middle-income countries. Natural products, particularly plant-derived compounds, have shown immense potential for developing anticancer drugs. In this study, we aimed to investigate the anticancer properties of the pericarp and seeds of Sphaerocoryne affinis fruit on human cervical carcinoma cells (HeLa) and isolate the bioactive compound from the active fraction. METHODS: We prepared solvent fractions from the ethanol extracts of the pericarp and the seed portion by partitioning and assessing their cytotoxicity on HeLa cells. Subsequently, we collected acetylmelodorinol (AM), an anticancer compound, from the ethyl acetate fraction of seeds and determined its structure using nuclear magnetic resonance. We employed cytotoxicity assay, western blotting, Annexin V apoptosis assay, measurement of intracellular reactive oxygen species (ROS) levels, 4',6-diamidino-2-phenylindole (DAPI) staining, and a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, to evaluate the anticancer properties of AM on HeLa. RESULTS: The solvent fractions from the seed displayed considerably higher cytotoxic activity against HeLa cells than those of the pericarp. We isolated and identified acetylmelodorinol as an anticancer compound from the ethyl acetate fraction from S. affinis seed extract. Treatment with acetylmelodorinol inhibited HeLa cell proliferation with an IC50 value of 2.62 ± 0.57 µg/mL. Furthermore, this study demonstrated that acetylmelodorinol treatment disrupted cell cycle progression by reducing the expression of cyclin E, CDK1/2, and AKT/mTOR pathways, increasing the intracellular ROS levels, reducing BCL-2/BCL-XL expression, causing DNA fragmentation and nuclear shrinkage, and triggering apoptosis through caspase 3 and 9 activation in a dose-and time-dependent manner. CONCLUSION: In contrast to previous reports, this study focuses on the inhibitory effects of AM on the AKT/mTOR pathway, leading to a reduction in cell proliferation in cervical cancer cells. Our findings highlight the promising potential of acetylmelodorinol as an effective treatment for cervical cancer. Additionally, this study establishes a foundation for investigating the molecular mechanisms underlying AM's properties, fostering further exploration into plant-based cancer therapies.


Subject(s)
Acetates , Proto-Oncogene Proteins c-akt , Uterine Cervical Neoplasms , Female , Humans , HeLa Cells , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Apoptosis , Cell Proliferation , TOR Serine-Threonine Kinases , Seeds , Solvents/pharmacology , Solvents/therapeutic use
3.
Biofabrication ; 15(4)2023 09 22.
Article in English | MEDLINE | ID: mdl-37659401

ABSTRACT

One of the most promising techniques for treating severe peripheral artery disease is the use of cellular tissue-engineered vascular grafts (TEVGs). This study proposes an inverse-gravity (IG) extrusion technique for creating long double-layered cellular TEVGs with diameters over 3 mm. A three-layered coaxial laminar hydrogel flow in an 8 mm-diameter pipe was realised simply by changing the extrusion direction of the hydrogel from being aligned with the direction of gravity to against it. This technique produced an extruded mixture of human aortic smooth muscle cells (HASMCs) and type-I collagen as a tubular structure with an inner diameter of 3.5 mm. After a 21 day maturation period, the maximal burst pressure, longitudinal breaking force, and circumferential breaking force of the HASMC TEVG were 416 mmHg, 0.69 N, and 0.89 N, respectively. The HASMC TEVG was endothelialised with human umbilical vein endothelial cells to form a tunica intima that simulated human vessels. Besides subcutaneous implantability on mice, the double-layered blood vessels showed a considerably lower adherence of platelets and red blood cells once exposed to heparinised mouse blood and were considered nonhaemolytic. The proposed IG extrusion technique can be applied in various fields requiring multilayered materials with large diameters.


Subject(s)
Aorta , Blood Platelets , Humans , Animals , Mice , Blood Vessel Prosthesis , Human Umbilical Vein Endothelial Cells , Hydrogels
4.
BMC Complement Med Ther ; 23(1): 290, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37598145

ABSTRACT

BACKGROUND: Cervical cancer remains a significant global health issue, highlighting the need for effective therapeutic strategies. Given that Sphaerocoryne affinis (SA) has shown potential anti-cancer activity in several cancer types, herein, we investigate the effects of SA fruit (SAF) on human cervical cancer HeLa cells and their underlying mechanisms of action. METHODS: SAF extract cytotoxicity was assessed in various cancer cell lines. The effects of the hexane fraction (SAF-Hex) on HeLa cell viability, cell cycle protein expression, apoptosis, and DNA damage were evaluated using cytotoxicity assays, Western blotting, quantitative PCR, 4',6-diamidino-2-phenylindole (DAPI) staining, and a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. RESULTS: SAF-Hex selectively inhibited HeLa cell viability with an IC50 of 4.20 ± 0.36 µg/mL and a selectivity index of 5.11 ± 0.58. The time-dependent cytotoxicity assay showed decreased cell survival after 48 h of treatment, accompanied by morphological changes and apoptotic bodies in HeLa cells. SAF-Hex also suppressed HeLa cell cycle proteins (Cyclin E, CDK2, and CDK1), reduced PCNA transcription, and diminished AKT and mTOR activation, thus inhibiting cell proliferation. The increased γH2AX expression, DNA fragmentation, and caspases-3 and -9 activation indicated SAF-Hex-induced DNA damage and apoptosis. However, the BAX/BCL-2 ratio remained unchanged, and BAX and BCL2 expression was attenuated. CONCLUSION: SAF-Hex effectively inhibits HeLa cell proliferation and induces DNA damage in that cervical cancer cell line activating apoptosis through the intrinsic pathway. Interestingly, the BAX/BCL-2 ratio remained unchanged while BAX and BCL2 transcription was attenuated. Hence, further research is required to explore this unexpected finding and facilitate the development of novel therapies targeting cervical cancer HeLa cells.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/drug therapy , HeLa Cells , Fruit , bcl-2-Associated X Protein , Apoptosis
5.
Autophagy ; 19(7): 2111-2142, 2023 07.
Article in English | MEDLINE | ID: mdl-36719671

ABSTRACT

There are diverse links between macroautophagy/autophagy pathways and unfolded protein response (UPR) pathways under endoplasmic reticulum (ER) stress conditions to restore ER homeostasis. Phosphorylation of EIF2S1/eIF2α is an important mechanism that can regulate all three UPR pathways through transcriptional and translational reprogramming to maintain cellular homeostasis and overcome cellular stresses. In this study, to investigate the roles of EIF2S1 phosphorylation in regulation of autophagy during ER stress, we used EIF2S1 phosphorylation-deficient (A/A) cells in which residue 51 was mutated from serine to alanine. A/A cells exhibited defects in several steps of autophagic processes (such as autophagosome and autolysosome formation) that are regulated by the transcriptional activities of the autophagy master transcription factors TFEB and TFE3 under ER stress conditions. EIF2S1 phosphorylation was required for nuclear translocation of TFEB and TFE3 during ER stress. In addition, EIF2AK3/PERK, PPP3/calcineurin-mediated dephosphorylation of TFEB and TFE3, and YWHA/14-3-3 dissociation were required for their nuclear translocation, but were insufficient to induce their nuclear retention during ER stress. Overexpression of the activated ATF6/ATF6α form, XBP1s, and ATF4 differentially rescued defects of TFEB and TFE3 nuclear translocation in A/A cells during ER stress. Consequently, overexpression of the activated ATF6 or TFEB form more efficiently rescued autophagic defects, although XBP1s and ATF4 also displayed an ability to restore autophagy in A/A cells during ER stress. Our results suggest that EIF2S1 phosphorylation is important for autophagy and UPR pathways, to restore ER homeostasis and reveal how EIF2S1 phosphorylation connects UPR pathways to autophagy.Abbreviations: A/A: EIF2S1 phosphorylation-deficient; ACTB: actin beta; Ad-: adenovirus-; ATF6: activating transcription factor 6; ATZ: SERPINA1/α1-antitrypsin with an E342K (Z) mutation; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CHX: cycloheximide; CLEAR: coordinated lysosomal expression and regulation; Co-IP: coimmunoprecipitation; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; EBSS: Earle's Balanced Salt Solution; EGFP: enhanced green fluorescent protein; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERAD: endoplasmic reticulum-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBS: fetal bovine serum; gRNA: guide RNA; GSK3B/GSK3ß: glycogen synthase kinase 3 beta; HA: hemagglutinin; Hep: immortalized hepatocyte; IF: immunofluorescence; IRES: internal ribosome entry site; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LMB: leptomycin B; LPS: lipopolysaccharide; MAP1LC3A/B/LC3A/B: microtubule associated protein 1 light chain 3 alpha/beta; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; NES: nuclear export signal; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OE: overexpression; PBS: phosphate-buffered saline; PLA: proximity ligation assay; PPP3/calcineurin: protein phosphatase 3; PTM: post-translational modification; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; TEM: transmission electron microscopy; TFE3: transcription factor E3; TFEB: transcription factor EB; TFs: transcription factors; Tg: thapsigargin; Tm: tunicamycin; UPR: unfolded protein response; WB: western blot; WT: wild-type; Xbp1s: spliced Xbp1; XPO1/CRM1: exportin 1.


Subject(s)
Endoribonucleases , Protein Serine-Threonine Kinases , Animals , Mice , Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Endoribonucleases/metabolism , Prokaryotic Initiation Factor-2/metabolism , Autophagy/genetics , Calcineurin/metabolism , Endoplasmic Reticulum-Associated Degradation , Sodium Dodecyl Sulfate/metabolism , Fibroblasts/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Microtubule-Associated Proteins/metabolism , Lysosomes/metabolism
6.
Antioxid Redox Signal ; 37(4-6): 257-273, 2022 08.
Article in English | MEDLINE | ID: mdl-35343238

ABSTRACT

Aims: Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) plays an important role in the ubiquitin-proteasome system and is distributed mostly in the brain. Previous studies have shown that mutated forms or reduction of UCH-L1 are related to neurodegenerative disorders, but the mechanisms of pathogenesis are still not well understood. To study its roles in motor neuronal health, we utilized the Drosophila model in which dUCH, a homolog of human UCH-L1, was specifically knocked down in motor neurons. Results: The reduction of Drosophila ubiquitin carboxyl-terminal hydrolase (dUCH) in motor neurons induced excessive reactive oxygen species production and multiple aging-like phenotypes, including locomotive defects, muscle degeneration, enhanced apoptosis, and shortened longevity. In addition, there is a decrease in the density of the synaptic active zone and glutamate receptor area at the neuromuscular junction. Interestingly, all these defects were rescued by vitamin C treatment, suggesting a close association with oxidative stress. Strikingly, the knockdown of dUCH at motor neurons exhibited aberrant morphology and function of mitochondria, such as mitochondrial DNA (mtDNA) depletion, an increase in mitochondrial size, and overexpression of antioxidant enzymes. Innovation: This research indicates a new, possible pathogenesis of dUCH deficiency in the ventral nerve cord and peripheral nervous systems, which starts with abnormal mitochondria, leading to oxidative stress and accumulation aging-like defects in general. Conclusion: Taken together, by using the Drosophila model, our findings strongly emphasize how the UCH-L1 shortage affects motor neurons and further demonstrate the crucial roles of UCH-L1 in neuronal health. Antioxid. Redox Signal. 37, 257-273.


Subject(s)
Drosophila Proteins , Drosophila , Motor Neurons , Ubiquitin Thiolesterase , Animals , Drosophila Proteins/genetics , Humans , Proteasome Endopeptidase Complex , Ubiquitin , Ubiquitin Thiolesterase/genetics
7.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34769510

ABSTRACT

The autophagy-lysosome pathway is a major protein degradation pathway stimulated by multiple cellular stresses, including nutrient or growth factor deprivation, hypoxia, misfolded proteins, damaged organelles, and intracellular pathogens. Recent studies have revealed that transcription factor EB (TFEB) and transcription factor E3 (TFE3) play a pivotal role in the biogenesis and functions of autophagosome and lysosome. Here we report that three translation inhibitors (cycloheximide, lactimidomycin, and rocaglamide A) can facilitate the nuclear translocation of TFEB/TFE3 via dephosphorylation and 14-3-3 dissociation. In addition, the inhibitor-mediated TFEB/TFE3 nuclear translocation significantly increases the transcriptional expression of their downstream genes involved in the biogenesis and function of autophagosome and lysosome. Furthermore, we demonstrated that translation inhibition increased autophagosome biogenesis but impaired the degradative autolysosome formation because of lysosomal dysfunction. These results highlight the previously unrecognized function of the translation inhibitors as activators of TFEB/TFE3, suggesting a novel biological role of translation inhibition in autophagy regulation.


Subject(s)
Autophagosomes/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomes/metabolism , Protein Biosynthesis , Animals , Autophagy/physiology , Cells, Cultured , Humans
8.
Folia Microbiol (Praha) ; 65(6): 955-961, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32578013

ABSTRACT

Pediocin PA-1 is a bacteriocin that shows strongly anti-microbial activity against some Gram-positive pathogens such as Listeria monocytogenes, Staphylococcus aureus, and Enterococcus faecalis. With the broad inhibitory spectrum as well as high-temperature stability, pediocin has a potential application in the food preservation and pharmaceutical industry. Pediocin has been studied to express in many heterologous expression systems such as Escherichia coli, Saccharomyces cerevisiae, and Pichia pastoris as a free peptide. Here we showed in this study a new strategy by using yeast surface display system to produce the anchored pediocin PA-1 on the cell surface of Saccharomyces cerevisiae, which could be used directly as a pediocin resource. We had successfully constructed a recombinant S. cerevisiae W303 strain that could express pediocin PA-1 on the cell surface. The pediocin-expressing yeast could inhibit the growth of Shigella boydii and Shigella flexneri, which have never been reported before for pediocin activity. Besides, the pediocin expression level of the recombinant S. cerevisiae strain was also evaluated in three different media: synthetic defined (SD), basic medium (BM), and fermentation medium (FM). BM medium was shown to give the highest production yield of the recombinant yeast (4.75 ± 0.75 g dry cell weight per 1 L of culture) with the ratio number of the pediocin-expressing cells of 93.46 ± 2.45%. Taken together, the results clearly showed that pediocin can be displayed on yeast cell surface as anchored protein. The application of yeast cell surface system enables a new door of pediocin application on either food or feed industries. Graphical abstract.


Subject(s)
Pediocins/genetics , Pediocins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteriocins , Fermentation , Genetic Vectors , Microbial Sensitivity Tests , Pediocins/pharmacology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL