Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 24(1): 467, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596513

ABSTRACT

BACKGROUND: Phloem protein 2 (PP2) proteins play a vital role in the Phloem-based defense (PBD) and participate in many abiotic and biotic stress. However, research on PP2 proteins in cotton is still lacking. RESULTS: A total of 25, 23, 43, and 47 PP2 genes were comprehensively identified and characterized in G.arboretum, G.raimondii, G.barbadense, and G.hirsutum. The whole genome duplication (WGD) and allopolyploidization events play essential roles in the expansion of PP2 genes. The promoter regions of GhPP2 genes contain many cis-acting elements related to abiotic stress and the weighted gene co-expression network analysis (WGCNA) analysis displayed that GhPP2s could be related to salt stress. The qRT-PCR assays further confirmed that GhPP2-33 could be dramatically upregulated during the salt treatment. And the virus-induced gene silencing (VIGS) experiment proved that the silencing of GhPP2-33 could decrease salt tolerance. CONCLUSIONS: The results in this study not only offer new perspectives for understanding the evolution of PP2 genes in cotton but also further explore their function under salt stress.


Subject(s)
Gossypium , Plant Proteins , Salt Tolerance , Gossypium/genetics , Plant Lectins , Salt Stress , Salt Tolerance/genetics , Plant Proteins/metabolism
2.
Angew Chem Int Ed Engl ; 60(26): 14370-14375, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33843128

ABSTRACT

The atomically dispersed metal is expected as one of the most promising Fenton-like catalysts for the degradation of recalcitrant organic pollutants (ROPs) by the strong "electronic metal-support interactions" (EMSIs). Here, we develop an atomically dispersed metal-atom alloy made by guest Au atoms substitute host V atoms in the two-dimensional VO2 (B) nanobelt support (Au/VO2 ) to activate Fenton-like oxidation for elimination of ROPs. The 2D nanobelt structure enlarges the exposure of atomically Au thus increasing the number of active sites to absorb more S2 O8 2- ions. And the EMSIs regulate the charge density in Au atoms to present positive charge Au+ , lowering the energy barrier of S2 O8 2- decomposition to produce SO4 .- . The Au/VO2 catalyst possesses excellent durable and reliable characteristics and exhibits record-breaking efficiency with TOF as high as 21.42 min-1 , 16.19 min-1 , and 80.89 min-1 for rhodamine, phenol, and bisphenol A degradation, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...