Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 367(6474): 210-214, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31919224

ABSTRACT

The chronology of the World Heritage Site of Sangiran in Indonesia is crucial for the understanding of human dispersals and settlement in Asia in the Early Pleistocene (before 780,000 years ago). It has been controversial, however, especially regarding the timing of the earliest hominin migration into the Sangiran region. We use a method of combining fission-track and uranium-lead dating and present key ages to calibrate the lower (older) Sangiran hominin-bearing horizons. We conclude that the first appearance datum for the Sangiran hominins is most likely ~1.3 million years ago and less than 1.5 million years ago, which is markedly later than the dates that have been widely accepted for the past two decades.


Subject(s)
Biological Evolution , Hominidae , Animals , Anthropology , Humans , Indonesia
2.
J Hum Evol ; 94: 28-44, 2016 05.
Article in English | MEDLINE | ID: mdl-27178456

ABSTRACT

Most Plio-Pleistocene sites in the Gregory Rift Valley that have yielded abundant fossil hominins lie on the Rift Valley floor. Here we report a new Pliocene site, Kantis, on the shoulder of the Gregory Rift Valley, which extends the geographical range of Australopithecus afarensis to the highlands of Kenya. This species, known from sites in Ethiopia, Tanzania, and possibly Kenya, is believed to be adapted to a wide spectrum of habitats, from open grassland to woodland. The Kantis fauna is generally similar to that reported from other contemporaneous A. afarensis sites on the Rift Valley floor. However, its faunal composition and stable carbon isotopic data from dental enamel suggest a stronger C4 environment than that present at those sites. Although the Gregory Rift Valley has been the focus of paleontologists' attention for many years, surveys of the Rift shoulder may provide new perspective on African Pliocene mammal and hominin evolution.


Subject(s)
Animal Distribution , Biological Evolution , Fossils , Hominidae/physiology , Animals , Environment , Geology , Kenya
3.
Proc Natl Acad Sci U S A ; 108(49): 19563-8, 2011 Dec 06.
Article in English | MEDLINE | ID: mdl-22106291

ABSTRACT

A detailed paleomagnetic study conducted in the Sangiran area, Java, has provided a reliable age constraint on hominid fossil-bearing formations. A reverse-to-normal polarity transition marks a 7-m thick section across the Upper Tuff in the Bapang Formation. The transition has three short reversal episodes and is overlain by a thick normal polarity magnetozone that was fission-track dated to the Brunhes chron. This pattern closely resembles another high-resolution Matuyama-Brunhes (MB) transition record in an Osaka Bay marine core. In the Sangiran sediments, four successive transitional polarity fields lie just below the presumed main MB boundary. Their virtual geomagnetic poles cluster in the western South Pacific, partly overlapping the transitional virtual geomagnetic poles from Hawaiian and Canary Islands' lavas, which have a mean (40)Ar/(39)Ar age of 776 ± 2 ka. Thus, the polarity transition is unambiguously the MB boundary. A revised correlation of tuff layers in the Bapang Formation reveals that the hominid last occurrence and the tektite level in the Sangiran area are nearly coincident, just below the Upper Middle Tuff, which underlies the MB transition. The stratigraphic relationship of the tektite level to the MB transition in the Sangiran area is consistent with deep-sea core data that show that the meteorite impact preceded the MB reversal by about 12 ka. The MB boundary currently defines the uppermost horizon yielding Homo erectus fossils in the Sangiran area.


Subject(s)
Fossils , Hominidae/anatomy & histology , Magnetics , Paleontology/methods , Animals , Geography , Humans , Indonesia , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL