Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167239, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750770

ABSTRACT

Fibulin-3 (FBLN3, aka EFEMP1) is a secreted extracellular matrix (ECM) glycoprotein implicated in ocular diseases including glaucoma and age-related macular degeneration. Yet surprisingly, little is known about its native biology, expression patterns, and localization in the eye. To overcome these shortcomings, we conducted gene expression analysis and immunohistochemistry for FBLN3 in ocular tissues from mice, pigs, non-human primates, and humans. Moreover, we evaluated age-related changes in FBLN3 and FBLN3-related ECM remodeling enzymes/inhibitors in aging mice. We found that FBLN3 displayed distinct staining patterns consistent across the mouse retina, particularly in the ganglion cell layer and inner nuclear layer (INL). In contrast, human retinas exhibited a unique staining pattern, with enrichment of FBLN3 in the retinal pigment epithelium (RPE), INL, and outer nuclear layer (ONL) in the peripheral retina. This staining transitioned to the outer plexiform layer (OPL) in the central retina/macula, and was accompanied by reduced RPE immunoreactivity approaching the fovea. Surprisingly, we found significant age-related increases in FBLN3 expression and protein abundance in the mouse retina which was paralleled by reduced transcript levels of FBLN3-degrading enzymes (i.e., Mmp2 and Htra1). Our findings highlight important species-dependent, retinal region-specific, and age-related expression and localization patterns of FBLN3 which favor its accumulation during aging. These findings contribute to a better understanding of FBLN3's role in ocular pathology and provide valuable insights for future FBLN3 research.


Subject(s)
Aging , Extracellular Matrix Proteins , Animals , Humans , Mice , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Aging/metabolism , Aging/genetics , Retina/metabolism , Swine , Male , Mice, Inbred C57BL , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics , Retinal Pigment Epithelium/metabolism , Female , Species Specificity , Aged
2.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168310

ABSTRACT

Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy (ML/DHRD) is an age-related macular degeneration (AMD)-like retinal dystrophy caused by an autosomal dominant R345W mutation in the secreted glycoprotein, fibulin-3 (F3). To identify new small molecules that reduce F3 production from retinal pigmented epithelium (RPE) cells, we knocked-in a luminescent peptide tag (HiBiT) into the endogenous F3 locus which enabled simple, sensitive, and high throughput detection of the protein. The GSK3 inhibitor, CHIR99021 (CHIR), significantly reduced F3 burden (expression, secretion, and intracellular levels) in immortalized RPE and non-RPE cells. Low-level, long-term CHIR treatment promoted remodeling of the RPE extracellular matrix (ECM), reducing sub-RPE deposit-associated proteins (e.g., amelotin, complement component 3, collagen IV, and fibronectin), while increasing RPE differentiation factors (e.g., tyrosinase, and pigment epithelium derived factor). In vivo, treatment of 8 mo R345W+/+ knockin mice with CHIR (25 mg/kg i.p., 1 mo) was well tolerated and significantly reduced R345W F3-associated AMD-like basal laminar deposit number and size, thereby preventing the main pathological feature in these mice. This is the first demonstration of small molecule-based prevention of AMD-like pathology in ML/DHRD mice and may herald a rejuvenation of interest in GSK3 inhibition for the treatment of neurodegenerative diseases, including, potentially AMD itself.

3.
Hum Mutat ; 43(12): 1945-1955, 2022 12.
Article in English | MEDLINE | ID: mdl-35998264

ABSTRACT

Fibulin-3 (F3 or EFEMP1) is a disulfide-rich, secreted glycoprotein necessary for maintaining extracellular matrix (ECM) and connective tissue integrity. Three studies have identified distinct autosomal recessive F3 mutations in individuals with Marfan Syndrome-like phenotypes. Herein, we characterize how one of these mutations, c.163T>C; p.Cys55Arg (C55R), disrupts F3 secretion, quaternary structure, and function by forming unique extracellular disulfide-linked homodimers. Dual cysteine mutants suggest that the C55R-induced disulfide species forms because of the new availability of Cys70 on adjacent F3 monomers. Surprisingly, mutation of single cysteines located near Cys55 (i.e., Cys29, Cys42, Cys48, Cys61, Cys70, Cys159, and Cys171) also produced similar extracellular disulfide-linked dimers, suggesting that this is not a phenomenon isolated to the C55R mutant. To assess C55R functionality, F3 knockout (KO) retinal pigmented epithelial (RPE) cells were generated, followed by reintroduction of wild-type (WT) or C55R F3. F3 KO cells produced lower levels of the ECM remodeling enzyme, matrix metalloproteinase 2, and reduced formation of collagen VI ECM filaments, both of which were partially rescued by WT F3 overexpression. However, C55R F3 was unable to compensate for these same ECM-related defects. Our results highlight the unique behavior of particular cysteine mutations in F3 and uncover potential routes to restore C55R F3 loss-of-function.


Subject(s)
Cysteine , Disulfides , Humans , Cysteine/genetics , Matrix Metalloproteinase 2/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix/genetics , Mutation
4.
iScience ; 25(5): 104206, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35521529

ABSTRACT

The Escherichia coli dihydrofolate reductase (DHFR) destabilizing domain (DD) serves as a promising approach to conditionally regulate protein abundance in a variety of tissues. To test whether this approach could be effectively applied to a wide variety of aged and disease-related ocular mouse models, we evaluated the DHFR DD system in the eyes of aged mice (up to 24 months), a light-induced retinal degeneration (LIRD) model, and two genetic models of retinal degeneration (rd2 and Abca4 -/- mice). The DHFR DD was effectively degraded in all model systems, including rd2 mice, which showed significant defects in chymotrypsin proteasomal activity. Moreover, trimethoprim (TMP) administration stabilized the DHFR DD in all mouse models. Thus, the DHFR DD-based approach allows for control of protein abundance in a variety of mouse models, laying the foundation to use this strategy for the conditional control of gene therapies to potentially treat multiple eye diseases.

5.
STAR Protoc ; 1(2)2020 09 18.
Article in English | MEDLINE | ID: mdl-32995756

ABSTRACT

Destabilizing domains (DDs) have been used successfully to conditionally control the abundance of proteins of interest (POIs) in a small-molecule-dependent manner in mice, worms (Caenorhabditis elegans), and Drosophila. However, development of such systems must account for delivery of the DD-POIs to the target tissue, accessibility of the target tissue to the small molecule, and quantification of stabilization. Here, we describe the considerations and steps to take in order to effectively implement a DD-POI in mouse ocular and hepatic tissue. For complete details on the use and execution of this protocol, please refer to Datta et al. (2018), Ramadurgum and Hulleman (2020), and Ramadurgum et al. (2020).


Subject(s)
Drug Delivery Systems/methods , Protein Stability/drug effects , Proteolysis/drug effects , Animals , Eye/metabolism , Intravitreal Injections/methods , Liver/metabolism , Mice , Mice, Inbred BALB C , Protein Domains/genetics , Protein Domains/physiology
6.
J Mol Med (Berl) ; 98(11): 1639-1656, 2020 11.
Article in English | MEDLINE | ID: mdl-32964303

ABSTRACT

Fibulin-3 (F3) is an extracellular matrix glycoprotein found in basement membranes across the body. An autosomal dominant R345W mutation in F3 causes a macular dystrophy resembling dry age-related macular degeneration (AMD), whereas genetic removal of wild-type (WT) F3 protects mice from sub-retinal pigment epithelium (RPE) deposit formation. These observations suggest that F3 is a protein which can regulate pathogenic sub-RPE deposit formation in the eye. Yet the precise role of WT F3 within the eye is still largely unknown. We found that F3 is expressed throughout the mouse eye (cornea, trabecular meshwork (TM) ring, neural retina, RPE/choroid, and optic nerve). We next performed a thorough structural and functional characterization of each of these tissues in WT and homozygous (F3-/-) knockout mice. The corneal stroma in F3-/- mice progressively thins beginning at 2 months, and the development of corneal opacity and vascularization starts at 9 months, which worsens with age. However, in all other tissues (TM, neural retina, RPE, and optic nerve), gross structural anatomy and functionality were similar across WT and F3-/- mice when evaluated using SD-OCT, histological analyses, electron microscopy, scotopic electroretinogram, optokinetic response, and axonal anterograde transport. The lack of noticeable retinal abnormalities in F3-/- mice was confirmed in a human patient with biallelic loss-of-function mutations in F3. These data suggest that (i) F3 is important for maintaining the structural integrity of the cornea, (ii) absence of F3 does not affect the structure or function of any other ocular tissue in which it is expressed, and (iii) targeted silencing of F3 in the retina and/or RPE will likely be well-tolerated, serving as a safe therapeutic strategy for reducing sub-RPE deposit formation in disease. KEY MESSAGES: • Fibulins are expressed throughout the body at varying levels. • Fibulin-3 has a tissue-specific pattern of expression within the eye. • Lack of fibulin-3 leads to structural deformities in the cornea. • The retina and RPE remain structurally and functionally healthy in the absence of fibulin-3 in both mice and humans.


Subject(s)
Cornea/metabolism , Extracellular Matrix Proteins/deficiency , Retina/metabolism , Animals , Biomarkers , Cornea/pathology , Disease Susceptibility , Gene Expression , Genotype , Humans , Macular Degeneration/etiology , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mice , Mice, Knockout , Mutation , Organ Specificity/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology
7.
Cell Chem Biol ; 27(5): 622-634.e6, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32330442

ABSTRACT

Destabilizing domains (DDs), such as a mutated form of Escherichia coli dihydrofolate reductase (ecDHFR), confer instability and promote protein degradation. However, when combined with small-molecule stabilizers (e.g., the antibiotic trimethoprim), DDs allow positive regulation of fusion protein abundance. Using a combinatorial screening approach, we identified and validated 17 unique 2,4-diaminopyrimidine/triazine-based ecDHFR DD stabilizers, at least 15 of which were ineffective antibiotics against E. coli and S. aureus. Identified stabilizers functioned in vivo to control an ecDHFR DD-firefly luciferase in the mouse eye and/or the liver. Next, stabilizers were leveraged to perform synergistic dual functions in vitro (HeLa cell death sensitization) and in vivo (repression of ocular inflammation) by stabilizing a user-defined ecDHFR DD while also controlling endogenous signaling pathways. Thus, these newly identified pharmacological chaperones allow for simultaneous control of compound-specific endogenous and user-defined genetic pathways, the combination of which may provide synergistic effects in complex biological scenarios.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enzyme Stability/drug effects , Folic Acid Antagonists/pharmacology , Pyrimidines/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , Animals , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli/enzymology , Female , Folic Acid Antagonists/chemistry , HeLa Cells , Humans , Male , Mice , Mice, Inbred BALB C , Pyrimidines/chemistry , Tetrahydrofolate Dehydrogenase/chemistry , Triazines/chemistry , Triazines/pharmacology , Trimethoprim/analogs & derivatives , Trimethoprim/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...