Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Med ; 94: 94-101, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35007940

ABSTRACT

PURPOSE: Radiotherapy may cause malfunction of implantable cardioverter-defibrillators (ICDs) and pacemakers (PMs). We carried-out a multicentre randomized in-vitro study on 65 ICDs and 145 PMs to evaluate malfunctions during and after direct irradiation to doses up to 10 Gy. METHODS: Three centres equipped with different linear accelerator and treatment-planning systems participated in the study. Computed Tomography (CT) acquisitions were performed to build the treatment plans. All devices were exposed to dose of 2, 5, or 10 Gy (6 MV). All devices underwent a baseline examination and 64 wireless real-time telemetry-transmissions (47 ICDs and 17 PMs) were monitored during photon exposures. All devices were interrogated after exposure and once monthly for six subsequent months. RESULTS: Fifty-four of the 64 wireless-enabled CIEDs (84.4%) recorded noise-related interferences during exposure. In detail, 40/47 ICDs (85.1%) reported interference, of which 16 ICDs (34%) reported potentially clinically relevant pacing inhibition and inappropriate detections. Following exposure, a soft reset occurred in 1/145 PM (0.7%) while 7/145 PMs (4.8%) reported battery issues. During the six-month follow-up, 1/145 PM (0.7%) reported a soft reset, while 12/145 more PMs (8.3%) and 1/64 ICD (1.5%) showed abnormal battery depletion. All reported issues occurred independently of exposure dose. Finally, irreversible effects on software and battery life occurred in only non-MRI-compatible devices. CONCLUSION: ICDs mostly featured real-time transient sensing issues, while PMs mostly experienced long-term battery or software issues that were observed immediately following radiation exposure and during follow-up. Irreversible effects on battery life and software occurred in only non-MRI-compatible devices.


Subject(s)
Defibrillators, Implantable , Pacemaker, Artificial , Defibrillators, Implantable/adverse effects , Electronics , Photons
2.
Phys Med ; 80: 201-208, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33190076

ABSTRACT

This study compares Treatment Planning System (TPS) out of field dose calculation on a pacemaker (PMK) during external beam radiotherapy treatment. We consider four TPSs (Elekta-Monaco, Oncentra- Masterplan and two Philips-Pinnacle3) commissioned for two linacs (Elekta Sinergy and Varian Clinac) delivering two test beams (a highly modulated one and a square field) and two clinical breast plans. To calculate and measure dose to a PMK we built a Real Water3 phantom with a PMK embedded in it. Measures are performed with thermo-luminescent dosimeters and Mosfet dosimeters. We evaluate differences between TPS calculated values for the dose to the PMK (both point dose and dose-volume histogram parameters) when the PMK is positioned in the first 10 cm outside the radiation fields. TPS calculation accuracy is evaluated comparing such values with measures. Differences in TPS calculations are on average 3.5 cGy Gy-1 for the modulated beam, and always lower than 2 cGy Gy-1 for the square beam. TPS dose calculation depends mostly on the TPS algorithm and model rather than the linac commissioned. TPSs considered show different degrees of calculation accuracy. In the first 4 cm to the field edge three out of four TPSs are in good agreement with measurements in the square beam, but only one keeps the agreement in the modulated beam: the others show over and underestimations up to +20% -40%. The same accuracy is found considering a homogeneous phantom. Our results confirm what reported in previous studies and highlight the impact of TPS commissioning.


Subject(s)
Pacemaker, Artificial , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Algorithms , Humans , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage
3.
J Appl Clin Med Phys ; 19(1): 86-93, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29125239

ABSTRACT

Volumetric Modulated Arc Therapy (VMAT) techniques for fractioned stereotactic brain radiotherapy (FSBRT) can achieve highly conformal dose distribution to intracranial lesions. However, they can potentially increase the dose to hippocampus (H) causing neurocognitive toxicity during the first four months after irradiation. The purpose of this study was to assess the feasibility of hippocampal-sparing (HS) treatment plans in 22 patients with brain metastasis treated with VMAT technique. Firstly, we retrospectively analyzed hippocampal doses in all 22 VMAT original (not hippocampal-sparing, NHS) plans. Plans with hippocampal dose exceeding constraints (9 out of 22) were re-planned considering dose constraints on the hippocampus (H) and on hippocampal avoidance zone (HAZ) generated using 5 mm isotropic margin to the hippocampus. Conformity (CI) and homogeneity indexes (HI) on the target and MUs, were maintained as close as possible to the original plans. Mean CINHS and CIHS obtained were: 0.79 ± 0.11 and 0.81 ± 0.10, respectively (P = 0.75); mean HINHS and HIHS were 1.05 ± 0.02 and 1.04 ± 0.01 respectively (P = 0.72). In both sets of plans, the mean MU values were similar: 1033 ± 275 and 1022 ± 234 for NHS and HS respectively. In HS plans, the mean hippocampal dose was decreased by an average of 35%. After replanning, the Dmax (21.3 Gy) for HAZ and H was met by 45% (4/9) and 78% (7/9) of the NHS plans, respectively. The worst results were obtained for cases with target volumes extention closer than 12 mm to H, because of the difficulty to spare hippocampus without compromising target coverage. After replanning D40% constraint value (7.3 Gy) was met by all the 9 NHS plans. In conclusion, this study suggests that an hippocampal-sparing approach to FSBRT is feasible resulting in a decrease in the dose to the hippocampus without any loss in conformity or increase in treatment time.


Subject(s)
Brain Neoplasms/surgery , Hippocampus/radiation effects , Organ Sparing Treatments/methods , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Aged , Aged, 80 and over , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/secondary , Feasibility Studies , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Middle Aged , Organs at Risk/radiation effects , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL