Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Science ; 382(6666): eadj0070, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37797027

ABSTRACT

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.


Subject(s)
Antigens, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , mRNA Vaccines , Humans , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross Reactions , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , mRNA Vaccines/immunology , Vaccination , Amino Acid Substitution
2.
bioRxiv ; 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-35860221

ABSTRACT

During the SARS-CoV-2 pandemic, multiple variants escaping pre-existing immunity emerged, causing concerns about continued protection. Here, we use antigenic cartography to analyze patterns of cross-reactivity among a panel of 21 variants and 15 groups of human sera obtained following primary infection with 10 different variants or after mRNA-1273 or mRNA-1273.351 vaccination. We find antigenic differences among pre-Omicron variants caused by substitutions at spike protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months post-2nd dose. We find changes in immunodominance of different spike regions depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine strain selection.

3.
J Virol ; 92(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29237833

ABSTRACT

Recently discovered broadly neutralizing antibodies (bNAbs) against HIV-1 demonstrate extensive breadth and potency against diverse HIV-1 strains and represent a promising approach for the treatment and prevention of HIV-1 infection. The breadth and potency of these antibodies have primarily been evaluated by using panels of HIV-1 Env-pseudotyped viruses produced in 293T cells expressing molecularly cloned Env proteins. Here we report on the ability of five bNAbs currently in clinical development to neutralize circulating primary HIV-1 isolates derived from peripheral blood mononuclear cells (PBMCs) and compare the results to those obtained with the pseudovirus panels used to characterize the bNAbs. The five bNAbs demonstrated significantly less breadth and potency against clinical isolates produced in PBMCs than against Env-pseudotyped viruses. The magnitude of this difference in neutralizing activity varied, depending on the antibody epitope. Glycan-targeting antibodies showed differences of only 3- to 4-fold, while antibody 10E8, which targets the membrane-proximal external region, showed a nearly 100-fold decrease in activity between published Env-pseudotyped virus panels and PBMC-derived primary isolates. Utilizing clonal PBMC-derived primary isolates and molecular clones, we determined that the observed discrepancy in bNAb performance is due to the increased sensitivity to neutralization exhibited by 293T-produced Env-pseudotyped viruses. We also found that while full-length molecularly cloned viruses produced in 293T cells exhibit greater sensitivity to neutralization than PBMC-derived viruses do, Env-pseudotyped viruses produced in 293T cells generally exhibit even greater sensitivity to neutralization. As the clinical development of bNAbs progresses, it will be critical to determine the relevance of each of these in vitro neutralization assays to in vivo antibody performance.IMPORTANCE Novel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Antibodies with exceptional neutralizing activity against HIV-1 may provide several advantages to traditional HIV drugs, including an improved side-effect profile, a reduced dosing frequency, and immune enhancement. The activity of these antibodies has been established in vitro by utilizing HIV-1 Env-pseudotyped viruses derived from circulating viruses but produced in 293T cells by pairing Env proteins with a backbone vector. We tested PBMC-produced circulating viruses against five anti-HIV-1 antibodies currently in clinical development. We found that the activity of these antibodies against PBMC isolates is significantly less than that against 293T Env-pseudotyped viruses. This decline varied among the antibodies tested, with some demonstrating moderate reductions in activity and others showing an almost 100-fold reduction. As the development of these antibodies progresses, it will be critical to determine how the results of different in vitro tests correspond to performance in the clinic.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/immunology , Leukocytes, Mononuclear/immunology , Adolescent , Adult , Aged , Antibodies, Monoclonal/immunology , Epitopes/immunology , Female , HEK293 Cells , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , Humans , Inhibitory Concentration 50 , Male , Middle Aged , Neutralization Tests , New York , Young Adult , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
4.
J Immunol Methods ; 409: 147-60, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24607608

ABSTRACT

A3R5 is a human CD4(+) lymphoblastoid cell line that was engineered to express CCR5 and is useful for the detection of weak neutralizing antibody responses against tier 2 strains of HIV-1. Here we describe the optimization and validation of the HIV-1 neutralizing antibody assay that utilizes A3R5 cells, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. The assay utilizes Renilla luciferase-expressing replication competent infectious molecular clones (IMC) encoding heterologous env genes from different HIV-1 clades. Key assay validation parameters tested included specificity, accuracy, precision, limit of detection and quantitation, specificity, linearity and range, and robustness. Plasma samples demonstrated higher non-specific activity than serum samples in the A3R5 assay. This assay can tolerate a wide range of virus input but is more sensitive to cell concentration. The higher sensitivity of the A3R5 assay in neutralization responses to tier 2 strains of HIV-1 makes it complementary to, but not a substitute for the TZM-bl assay. The validated A3R5 assay is employed as an endpoint immunogenicity test for vaccine-elicited neutralizing antibodies against tier 2 strains of HIV-1, and to identify correlates of protection in HIV-1 vaccine trials conducted globally.


Subject(s)
Antibodies, Neutralizing/blood , HIV Antibodies/blood , HIV Infections/diagnosis , HIV-1/immunology , High-Throughput Screening Assays/standards , Neutralization Tests/standards , Automation, Laboratory/standards , Biomarkers/blood , Cell Line , Guideline Adherence/standards , HIV Infections/blood , HIV Infections/immunology , HIV-1/genetics , Humans , Limit of Detection , Observer Variation , Practice Guidelines as Topic/standards , Predictive Value of Tests , Quality Control , Reproducibility of Results , Time Factors , Transfection
5.
J Virol ; 88(5): 2489-507, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24352443

ABSTRACT

UNLABELLED: Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. IMPORTANCE: An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine.


Subject(s)
AIDS Vaccines/immunology , AIDS Vaccines/standards , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Amino Acid Sequence , Antibody Specificity/immunology , Cell Line , Cluster Analysis , Cross Reactions/immunology , Epitopes/immunology , HIV-1/classification , HIV-1/genetics , Humans , Molecular Sequence Data , Neutralization Tests/standards , Phylogeny , Receptors, HIV , Reproducibility of Results , Sequence Alignment , Viral Tropism , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
6.
Am J Physiol Gastrointest Liver Physiol ; 305(8): G573-84, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23989005

ABSTRACT

Crohn's disease (CD) is a chronic, immune-mediated, inflammatory disorder of the intestine that has been linked to numerous susceptibility genes, including the immunity-related GTPase (IRG) M (IRGM). IRGs comprise a family of proteins known to confer resistance to intracellular infections through various mechanisms, including regulation of phagosome processing, cell motility, and autophagy. However, despite its association with CD, the role of IRGM and other IRGs in regulating intestinal inflammation is unclear. We investigated the involvement of Irgm1, an ortholog of IRGM, in the genesis of murine intestinal inflammation. After dextran sodium sulfate exposure, Irgm1-deficient [Irgm1 knockout (KO)] mice showed increased acute inflammation in the colon and ileum, with worsened clinical responses. Marked alterations of Paneth cell location and granule morphology were present in Irgm1 KO mice, even without dextran sodium sulfate exposure, and were associated with impaired mitophagy and autophagy in Irgm1 KO intestinal cells (including Paneth cells). This was manifested by frequent tubular and swollen mitochondria and increased LC3-positive autophagic structures. Interestingly, these LC3-positive structures often contained Paneth cell granules. These results suggest that Irgm1 modulates acute inflammatory responses in the mouse intestine, putatively through the regulation of gut autophagic processes, that may be pivotal for proper Paneth cell functioning.


Subject(s)
Colitis/chemically induced , GTP-Binding Proteins/metabolism , Paneth Cells/pathology , Animals , Autophagy , Colitis/metabolism , Dextran Sulfate/toxicity , Female , GTP-Binding Proteins/genetics , Gene Expression Regulation/physiology , Ileitis/chemically induced , Ileitis/metabolism , Inflammation/genetics , Inflammation/metabolism , Male , Mice , Mice, Knockout , Mitophagy , Paneth Cells/metabolism
7.
Immunol Res ; 49(1-3): 44-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21120634

ABSTRACT

Telomeres are noncoding DNA regions at the end of the chromosomes that are crucial for genome stability. Since telomere length decreases with cell division, they can be used as a signature of cell proliferation history. T-cell reconstitution in severe combined immunodeficiency (SCID) subjects, recipients of T-cell-depleted, allogeneic-related bone marrow cells, is due to the development and maturation of donor T-cell precursors in the infant's vestigial thymus and to homeostatic proliferation of mature T cells in the peripheral organs. Since T-cell function, thymic output, and T-cell clonal diversity are maintained long term in these patients, we investigated whether donor T-cell engraftment resulted in increased telomere shortening. Our study of seven SCID patients, following successful bone marrow transplantation, demonstrates that the patients' peripheral T cells did not exhibit greater than normal telomere shortening.


Subject(s)
Bone Marrow Transplantation , Severe Combined Immunodeficiency/genetics , T-Lymphocytes , Telomere/genetics , Adult , Antigens, CD/analysis , Antigens, CD/blood , Cell Proliferation , Flow Cytometry , Humans , Precursor Cells, T-Lymphoid , Receptors, Antigen, T-Cell/genetics , Severe Combined Immunodeficiency/blood , Severe Combined Immunodeficiency/therapy , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation , Telomere/metabolism , Transplantation
8.
J Leukoc Biol ; 85(5): 877-85, 2009 May.
Article in English | MEDLINE | ID: mdl-19176402

ABSTRACT

The immunity-related GTPases (IRG), also known as p47 GTPases, are a family of proteins that are tightly regulated by IFNs at the transcriptional level and serve as key mediators of IFN-regulated resistance to intracellular bacteria and protozoa. Among the IRG proteins, loss of Irgm1 has the most profound impact on IFN-gamma-induced host resistance at the physiological level. Surprisingly, the losses of host resistance seen in the absence of Irgm1 are sometimes more striking than those seen in the absence of IFN-gamma. In the current work, we address the underlying mechanism. We find that in several contexts, another protein in the IRG family, Irgm3, functions to counter the effects of Irgm1. By creating mice that lack Irgm1 and Irgm3, we show that several phenotypes important to host resistance that are caused by Irgm1 deficiency are reversed by coincident Irgm3 deficiency; these include resistance to Salmonella typhimurium in vivo, the ability to affect IFN-gamma-induced Salmonella killing in isolated macrophages, and the ability to regulate macrophage adhesion and motility in vitro. Other phenotypes that are caused by Irgm1 deficiency, including susceptibility to Toxoplasma gondii and the regulation of GKS IRG protein expression and localization, are not reversed but exacerbated when Irgm3 is also absent. These data suggest that members of the Irgm subfamily within the larger IRG family possess activities that can be opposing or cooperative depending on the context, and it is the balance of these activities that is pivotal in mediating IFN-gamma-regulated host resistance.


Subject(s)
GTP-Binding Proteins/immunology , Interferon-gamma/immunology , Macrophages/immunology , Salmonella Infections, Animal/immunology , Toxoplasmosis, Animal/immunology , Animals , Cell Adhesion/immunology , Cells, Cultured , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Immunity, Innate , Liver/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Salmonella typhimurium/immunology , Spleen/pathology , Toxoplasma/immunology
9.
Genes Brain Behav ; 7(7): 786-95, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18616608

ABSTRACT

P311 is an 8-kDa protein that is expressed in many brain regions, particularly the hippocampus, cerebellum and olfactory lobes, and is under stringent regulation by developmental, mitogenic and other physiological stimuli. P311 is thought to be involved in the transformation and motility of neural cells; however, its role in normal brain physiology is undefined. To address this point, P311-deficient mice were developed through gene targeting and their behaviors were characterized. Mutants displayed no overt abnormalities, bred normally and had normal survival rates. Additionally, no deficiencies were noted in motor co-ordination, balance, hearing or olfactory discrimination. Nevertheless, P311-deficient mice showed altered behavioral responses in learning and memory. These included impaired responses in social transmission of food preference, Morris water maze and contextual fear conditioning. Additionally, mutants displayed altered emotional responses as indicated by decreased freezing in contextual and cued fear conditioning and reduced fear-potentiated startle. Together, these data establish P311 as playing an important role in learning and memory processes and emotional responses.


Subject(s)
Behavior, Animal/physiology , Nerve Tissue Proteins/genetics , Amygdala/abnormalities , Amygdala/physiopathology , Animals , Blotting, Northern , Cerebellum/abnormalities , Cerebellum/physiopathology , Conditioning, Psychological/physiology , Electroshock , Fear/physiology , Female , Food Preferences/physiology , Food Preferences/psychology , Gene Targeting , Hippocampus/abnormalities , Hippocampus/physiopathology , Male , Maze Learning/physiology , Memory/physiology , Mice , Mice, Knockout , Reflex, Startle/physiology , Reverse Transcriptase Polymerase Chain Reaction , Seizures/physiopathology , Social Environment
SELECTION OF CITATIONS
SEARCH DETAIL
...