Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1273: 341528, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37423662

ABSTRACT

Efficient DNA sample preparation from fungi with the rigid cell walls is still critical for successful polymerase chain reaction (PCR), one of the basic platforms in molecular diagnostics of fungi, especially in medical mycology. Common methods that involve different chaotropes to yield DNA samples have found a limited application for fungi. Here we describe a novel procedure for efficient production of permeable fungal cell envelopes with DNA inside as suitable templates for PCR. This procedure is facile, relies on boiling of fungal cells in aqueous solutions of selected chaotropic agents and additives and enables to remove RNA and proteins from PCR template samples. The use of chaotropic solutions containing 7 M urea, 1% sodium dodecyl sulfate (SDS), up to100 mM ammonia and/or 25 mM sodium citrate was the best option to yield highly purified DNA-containing cell envelopes from all fungal strains under study, including clinical Candida and Cryptococcusisolates. After treatment with the selected chaotropic mixtures, the fungal cell walls had undergone loosening and were no longer a barrier to release DNA in PCR as evident from electron microscopy examinations and successful target gene amplifications. Overall, the developed simple, fast, and low-cost approach to produce PCR-suitable templates in the form of DNA encased by permeable cell walls can find application in molecular diagnostics.


Subject(s)
Cell Wall , Polymerase Chain Reaction , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , Polymerase Chain Reaction/methods , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Fungal/isolation & purification , Cell Wall/chemistry
2.
J Biomol Struct Dyn ; 38(13): 3959-3971, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31543001

ABSTRACT

To the present, different efficient but expensive, multistage, and time-consuming technologies have been developed to deliver ribonucleic acids (RNA) into eukaryotic cells. Here, we report a simple and feasible solution to design RNA nanocarriers based on nucleic acid condensation by bi- and trivalent metal ions during thermal cycling. Efficient RNA conversion to nanoparticles with small size (10-50 nm) suitable for transfection was achieved using cations Ni2+, Co2+ or Cu2+ alone or in combination with Ca2+ at the specially selected concentrations (2.0 mM-3.5 mM), low ionic strength, and narrow pH range (8.0-8.5). Other ions - Mn2+, Zn2+, Tb3+, or Gd3+ - caused RNA-cleaving effect that was abolished in the presence of Ni2+, Co2+, Zn2+, or Cu2+. Naked RNA-metal ion nanoparticles were extremely unstable in phosphate buffer and sensitive to serum ribonucleases (RNases), and this problem was solved by treatment with polyarginines-16 and 8. Polyarginine-stabilized nanoparticles, containing malachite green (MG) aptamer RNA and metal cations, crossed the cell membrane, dissociated in the cytoplasm, and preserved the functionality of transported RNA, as judged from efficient transfection of human embryonic kidney 293 cells. The technology, involving RNA condensation by metal cations, can be used as a cheap alternative to produce nanoscale carriers to deliver various RNAs into cells in vitro and in vivo.Communicated by Ramaswamy H. Sarma.


Subject(s)
Nanoparticles , RNA , Cations , Humans , Metals , Transfection
3.
J Biomol Struct Dyn ; 37(4): 918-930, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29457757

ABSTRACT

Our previous studies demonstrated the formation of structurally diverse DNA-containing microparticles (DNA MPs) in PCR with Mg-pyrophosphate (MgPPi) as the structure-forming component. These DNA MPs were referred to major structural types: microdisks (2D MPs) with nanometer thickness and 3D MPs with sophisticated morphology and constructed from intersecting disks and their segments. Little is known about factors that influence both the morphology and size of DNA MPs, and the present study was aimed at fulfilling this gap. We showed that the addition of Mn2+ cations to PCR mixtures caused the profound changes in MPs morphology, depending on DNA polymerase used (KlenTaq or Taq). Asymmetric PCR with 20-fold decrease in the concentration of one of two primers facilitated the predominant formation of microdisks with unusual structure. The addition of 1 mM Na-pyrophosphate to PCR mixtures with synthesized DNA and subsequent thermal cycling (10-15 cycles) were optimal to produce microdisks or nanometer 3D particles. Using electron microscopy, we studied also the structure of inorganic micro- and nanoparticles from MgPPi, formed during multiple heating and cooling cycles of a mixture of Mg2+ and Na-pyrophosphate in various regimes. Also, we found the conditions to yield planar (Mg·Mn)PPi nanocrystals (diameter ~100 nm and thickness ~10 nm) which efficiently adsorbed exogenous DNA. These inorganic nanoparticles are promising for DNA delivery in transfection studies. Mechanisms to be involved in structural modifications of MPs and perspectives of their practical application are discussed.


Subject(s)
DNA/chemistry , Diphosphates/chemistry , Magnesium Compounds/chemistry , Nanoparticles/chemistry , Polymerase Chain Reaction/methods , Microspheres , Taq Polymerase/metabolism
4.
J Biomol Struct Dyn ; 34(3): 625-39, 2016.
Article in English | MEDLINE | ID: mdl-25891071

ABSTRACT

This work aims to study molecular mechanisms involved in the formation of DNA-containing microparticles and nanoparticles during PCR. Both pyrophosphate and Mg(2+) ions proved to play an important role in the generation of DNA microparticles (MPs) with a unique and sophisticated structure in PCR with Taq polymerase. Thus, the addition of Tli thermostable pyrophosphatase to a PCR mixture inhibited this process and caused the destruction of synthesized DNA MPs. Thermal cycling of Na-pyrophosphate (Na-PPi)- and Mg(2+)-containing mixtures (without DNA polymerase and dNTPs) under the standard PCR regime yielded crystalline oval or lenticular microdisks and 3D MPs composed from magnesium pyrophosphate (Mg-PPi). As shown by scanning electron microscopy (SEM), the produced Mg-PPi microparticles consisted of intersecting disks or their segments. They were morphologically similar but simpler than DNA-containing MPs generated in PCR. The incorporation of dNTPs, primers, or dsDNA into Mg-pyrophosphate particles resulted in the structural diversification of 3D microparticles. Thus, the unusual and complex structure of DNA MPs generated in PCR is governed by the unique feature of Mg-pyrophosphate to form supramolecular particles during thermal cycling. We hypothesize the Mg-pyrophosphate particles that are produced during thermal cycling serve as scaffolds for amplicon DNA condensation.


Subject(s)
DNA/chemistry , Diphosphates/chemistry , Magnesium Compounds/chemistry , Nanoparticles/chemistry , Polymerase Chain Reaction , DNA Primers/chemistry , Magnesium/chemistry , Nanoparticles/ultrastructure , Polymerase Chain Reaction/methods , Sodium/chemistry
5.
J Biomol Struct Dyn ; 32(12): 1979-92, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24256107

ABSTRACT

Studies of DNA condensation have opened new perspectives in biotechnology and medicine. DNA condensation induced by polyamines or trivalent metal ions in vitro at room temperature has been investigated in detail. Our recent studies have demonstrated Mg(2+)-mediated formation of DNA condensates during the PCR. In this study, we report the unique morphology and fine structure of PCR-generated condensed DNA particles using electron and atomic force microscopy. The principal morphologies of studied DNA condensates are 3D particles of micrometer dimensions, oval microdisks of nanometer thickness, filaments, and compact nano-sized particles. SEM examinations have revealed a new structural type of spherical and elliptical 3D microparticles formed by numerous definitely oriented microdisks and their segments. AFM revealed a granular structure of the microdisk surface and the smallest nano-sized disks and thinnest nanofibrils - that appear to be the primary products of DNA condensation during the PCR. We suggest that the formation of DNA nanofibrils and nanodisks in PCR occurs due to Mg(2+) - mediated intermolecular (lateral) and intramolecular condensation of ssDNA. Aggregation of elementary nanodisks in the course of thermal PCR cycles, occurring both by magnesium cations and via complementary interactions, give a rise to large nano-sized aggregates and more complex microparticles.


Subject(s)
DNA/chemistry , Nanoparticles/chemistry , DNA/ultrastructure , Magnesium/chemistry , Microscopy, Atomic Force , Microscopy, Electron , Nanoparticles/ultrastructure , Particle Size , Polymerase Chain Reaction
6.
Arch Microbiol ; 183(6): 401-10, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16027952

ABSTRACT

IS elements were identified in the genomes of five Acidithiobacillus ferrooxidans strains isolated from various media. IST2 elements were revealed in all the strains grown in a medium with ferrous iron, ISAfe1 elements were detected in four strains (TFBk, TFL-2, TFV-1 and TFO). Three strains (TFV-1, TFN-d and TFO) were found to contain IS elements, approximately 600 bp long. These were named preliminary as ISAfe600. Partial sequencing of the 5'- and 3'-terminal nucleotide stretches of an ISAfe1 element in TFBk and TFL-2 strains and complete sequencing of the ISAfe1 element in the TFBk strain has revealed nucleotide substitutions as compared to the prototype, i.e., the ISAfe1 element of an ATCC 19859 strain. Partial sequencing of the 5'- and 3'-terminal nucleotide stretches of the IST2 elements in TFO, TFBk and TFL-2 strains has shown numerous nucleotide substitutions when compared to the IST2 element of an ATCC 19859 strain. Complete sequencing of the IST2 element in the TFBk strain has revealed: the divergence between the IST2 elements in the TFBk strain and the prototype was 21.2%. Southern hybridization of EcoRI fragments of the chromosomal DNA from five A. ferrooxidans strains grown in a medium with ferrous iron using an internal region of ISAfe1, a full-length ISAfe1 or a full-length IST2 as probes has shown them to differ in the number of copies of IS elements and their localization on the chromosomes. Adaptation to elemental sulfur in A. ferrooxidans strains caused changes in the number, intensity and localization of hybridization bands. The authors discuss the role of IS elements in the adaptation of A. ferrooxidans to the new energy substrate.


Subject(s)
Acidithiobacillus thiooxidans/genetics , DNA Transposable Elements/genetics , Genome, Bacterial , 3' Flanking Region , 5' Flanking Region , Acidithiobacillus thiooxidans/growth & development , Base Sequence , Chromosomes, Bacterial/genetics , Culture Media , DNA, Bacterial/genetics , Ferrous Compounds , Molecular Sequence Data , Sequence Alignment , Soil Microbiology , Sulfur
SELECTION OF CITATIONS
SEARCH DETAIL
...