Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Med Inform Assoc ; 31(5): 1093-1101, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38472144

ABSTRACT

OBJECTIVE: To introduce 2 R-packages that facilitate conducting health economics research on OMOP-based data networks, aiming to standardize and improve the reproducibility, transparency, and transferability of health economic models. MATERIALS AND METHODS: We developed the software tools and demonstrated their utility by replicating a UK-based heart failure data analysis across 5 different international databases from Estonia, Spain, Serbia, and the United States. RESULTS: We examined treatment trajectories of 47 163 patients. The overall incremental cost-effectiveness ratio (ICER) for telemonitoring relative to standard of care was 57 472 €/QALY. Country-specific ICERs were 60 312 €/QALY in Estonia, 58 096 €/QALY in Spain, 40 372 €/QALY in Serbia, and 90 893 €/QALY in the US, which surpassed the established willingness-to-pay thresholds. DISCUSSION: Currently, the cost-effectiveness analysis lacks standard tools, is performed in ad-hoc manner, and relies heavily on published information that might not be specific for local circumstances. Published results often exhibit a narrow focus, central to a single site, and provide only partial decision criteria, limiting their generalizability and comprehensive utility. CONCLUSION: We created 2 R-packages to pioneer cost-effectiveness analysis in OMOP CDM data networks. The first manages state definitions and database interaction, while the second focuses on Markov model learning and profile synthesis. We demonstrated their utility in a multisite heart failure study, comparing telemonitoring and standard care, finding telemonitoring not cost-effective.


Subject(s)
Cost-Effectiveness Analysis , Heart Failure , Humans , United States , Cost-Benefit Analysis , Reproducibility of Results , Models, Economic , Heart Failure/therapy , Markov Chains
2.
Drug Saf ; 46(12): 1335-1352, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804398

ABSTRACT

INTRODUCTION: Individual case reports are the main asset in pharmacovigilance signal management. Signal validation is the first stage after signal detection and aims to determine if there is sufficient evidence to justify further assessment. Throughout signal management, a prioritization of signals is continually made. Routinely collected health data can provide relevant contextual information but are primarily used at a later stage in pharmacoepidemiological studies to assess communicated signals. OBJECTIVE: The aim of this study was to examine the feasibility and utility of analysing routine health data from a multinational distributed network to support signal validation and prioritization and to reflect on key user requirements for these analyses to become an integral part of this process. METHODS: Statistical signal detection was performed in VigiBase, the WHO global database of individual case safety reports, targeting generic manufacturer drugs and 16 prespecified adverse events. During a 5-day study-a-thon, signal validation and prioritization were performed using information from VigiBase, regulatory documents and the scientific literature alongside descriptive analyses of routine health data from 10 partners of the European Health Data and Evidence Network (EHDEN). Databases included in the study were from the UK, Spain, Norway, the Netherlands and Serbia, capturing records from primary care and/or hospitals. RESULTS: Ninety-five statistical signals were subjected to signal validation, of which eight were considered for descriptive analyses in the routine health data. Design, execution and interpretation of results from these analyses took up to a few hours for each signal (of which 15-60 minutes were for execution) and informed decisions for five out of eight signals. The impact of insights from the routine health data varied and included possible alternative explanations, potential public health and clinical impact and feasibility of follow-up pharmacoepidemiological studies. Three signals were selected for signal assessment, two of these decisions were supported by insights from the routine health data. Standardization of analytical code, availability of adverse event phenotypes including bridges between different source vocabularies, and governance around the access and use of routine health data were identified as important aspects for future development. CONCLUSIONS: Analyses of routine health data from a distributed network to support signal validation and prioritization are feasible in the given time limits and can inform decision making. The cost-benefit of integrating these analyses at this stage of signal management requires further research.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Pharmacovigilance , Humans , Adverse Drug Reaction Reporting Systems , Drug-Related Side Effects and Adverse Reactions/epidemiology , Databases, Factual , Netherlands
SELECTION OF CITATIONS
SEARCH DETAIL
...