Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498943

ABSTRACT

Cytochrome P450 2U1 (CYP2U1) identified from the human genome remains poorly known since few data are presently available on its physiological function(s) and substrate(s) specificity. CYP2U1 mutations are associated with complicated forms of hereditary spastic paraplegia, alterations of mitochondrial architecture and bioenergetics. In order to better know the biological roles of CYP2U1, we used a bioinformatics approach. The analysis of the data invited us to focus on leukotriene B4 (LTB4), an important inflammatory mediator. Here, we show that CYP2U1 efficiently catalyzes the hydroxylation of LTB4 predominantly on its ω-position. We also report docking experiments of LTB4 in a 3D model of truncated CYP2U1 that are in agreement with this hydroxylation regioselectivity. The involvement of CYP2U1 in the metabolism of LTB4 could have strong physiological consequences in cerebral pathologies including ischemic stroke because CYP2U1 is predominantly expressed in the brain.


Subject(s)
Cytochrome P-450 Enzyme System , Leukotriene B4 , Humans , Leukotriene B4/metabolism , Hydroxylation , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Fatty Acids , Cytochrome P450 Family 2/genetics , Cytochrome P450 Family 2/metabolism
2.
Eur J Med Chem ; 234: 114202, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35279607

ABSTRACT

Ferrociphenols are characterized by the presence of a biologically active redox motif [ferrocenyl-ene-p-phenol], and are known to exhibit anticancer properties. Recent studies have identified a new series of ferrociphenols that bear an imido-type heterocycle at the terminus of a short alkyl chain, and which showed very strong antiproliferativity against multiple types of cancer cells. This work describes the syntheses and an SAR study of ferrociphenols bearing a diversity-based range of nitrogen-containing substituents on the alkyl chain. Preliminary oxidative metabolism experiments and ROS-related bioactivity measurements were also carried out to probe the origin of the cytotoxicity of the imido-ferrociphenols. Furthermore, an interesting dimerization phenomenon was observed in the X-ray crystal structure of the 2,3-naphthalenedicarboximidopropyl-ferrocidiphenol, 21, which may be a factor in decreasing its rate of oxidation to form the corresponding quinone methide, 21-QM, thereby affecting its antitumor activity. These results suggest that both the formation rate and the stability of QMs could affect the antiproliferative activity of their ferrociphenol precursors.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Antineoplastic Agents/chemistry , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Humans , Oxidation-Reduction , Phenols/chemistry
3.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055091

ABSTRACT

Enzymatic oxidations of thiophenes, including thiophene-containing drugs, are important for biodesulfurization of crude oil and drug metabolism of mono- and poly-cyclic thiophenes. Thiophene oxidative dearomatization pathways involve reactive metabolites, whose detection is important in the pharmaceutical industry, and are catalyzed by monooxygenase (sulfoxidation, epoxidation) and dioxygenase (sulfoxidation, dihydroxylation) enzymes. Sulfoxide and epoxide metabolites of thiophene substrates are often unstable, and, while cis-dihydrodiol metabolites are more stable, significant challenges are presented by both types of metabolite. Prediction of the structure, relative and absolute configuration, and enantiopurity of chiral metabolites obtained from thiophene enzymatic oxidation depends on the substrate, type of oxygenase selected, and molecular docking results. The racemization and dimerization of sulfoxides, cis/trans epimerization of dihydrodiol metabolites, and aromatization of epoxides are all factors associated with the mono- and di-oxygenase-catalyzed metabolism of thiophenes and thiophene-containing drugs and their applications in chemoenzymatic synthesis and medicine.


Subject(s)
Dioxygenases/metabolism , Mixed Function Oxygenases/metabolism , Oxidation-Reduction , Thiophenes/metabolism , Biotransformation , Catalysis , Cytochrome P-450 Enzyme System/metabolism , Inactivation, Metabolic , Metabolic Networks and Pathways , Models, Molecular , Molecular Conformation , Molecular Structure , Oxidative Stress , Protein Binding , Structure-Activity Relationship , Sulfoxides/chemistry , Sulfoxides/metabolism , Thiophenes/chemistry
4.
J Med Chem ; 63(15): 8231-8249, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32608236

ABSTRACT

Sialin, encoded by the SLC17A5 gene, is a lysosomal sialic acid transporter defective in Salla disease, a rare inherited leukodystrophy. It also enables metabolic incorporation of exogenous sialic acids, leading to autoantibodies against N-glycolylneuraminic acid in humans. Here, we identified a novel class of human sialin ligands by virtual screening and structure-activity relationship studies. The ligand scaffold is characterized by an amino acid backbone with a free carboxylate, an N-linked aromatic or heteroaromatic substituent, and a hydrophobic side chain. The most potent compound, 45 (LSP12-3129), inhibited N-acetylneuraminic acid 1 (Neu5Ac) transport in a non-competitive manner with IC50 ≈ 2.5 µM, a value 400-fold lower than the KM for Neu5Ac. In vitro and molecular docking studies attributed the non-competitive character to selective inhibitor binding to the Neu5Ac site in a cytosol-facing conformation. Moreover, compound 45 rescued the trafficking defect of the pathogenic mutant (R39C) causing Salla disease. This new class of cell-permeant inhibitors provides tools to investigate the physiological roles of sialin and help develop pharmacological chaperones for Salla disease.


Subject(s)
Amino Acids/chemistry , Amino Acids/metabolism , Lysosomes/metabolism , Organic Anion Transporters/metabolism , Symporters/metabolism , Animals , Dose-Response Relationship, Drug , HEK293 Cells , HeLa Cells , Humans , Ligands , Molecular Docking Simulation/methods , Protein Structure, Secondary , Rats
5.
Drug Metab Dispos ; 48(6): 426-431, 2020 06.
Article in English | MEDLINE | ID: mdl-32234734

ABSTRACT

It has been reported that microsomal metabolism of ADT (5-(p-methoxyphenyl)-3H-1,2-dithiole-3-thione, anetholedithiolethione, Sulfarlem) and ADO (5-(p-methoxyphenyl)-3H-1,2-dithiole-3-one, anetholedithiolone) led to formation of H2S mainly derived from oxidations catalyzed by cytochrome P450-dependent monooxygenases and that ADO was a better H2S donor than ADT under these conditions. This article compares the H2S donor abilities of 18 dithiolethione and dithiolone analogs of ADT and ADO upon incubation with rat liver microsomes. It shows that, for all the studied compounds, maximal H2S formation was obtained after incubation with microsomes and NADPH and that this formation greatly decreased in the presence of N-benzylimidazole, a known inhibitor of cytochrome P450. This indicates that H2S formation from all the studied compounds requires, as previously observed in the case of ADT and ADO, oxidations catalyzed by cytochrome P450-dependent monooxygenases. Under these conditions, the studied dithiolones were almost always better H2S donors than the corresponding dithiolethiones. Interestingly, the best H2S yields (up to 75%) were observed in microsomal oxidation of ADO and its close analogs, pCl-Ph-DO and Ph-DO, in the presence of glutathione (GSH), whereas only small amounts of H2S were formed in microsomal incubations of those compounds with GSH but in the absence of NADPH. A possible mechanism for this effect of GSH is proposed on the basis of results obtained from reactions of GSH with 5-(p-methoxyphenyl)-3H-1,2-dithiole-3-one-1-sulfoxide, the ADO metabolite involved in H2S formation in microsomal oxidation of ADO. SIGNIFICANCE STATEMENT: A series of 18 dithiolethiones and dithiolones were compared for their ability to form hydrogen sulfide (H2S) in oxidations catalyzed by microsomal monooxygenases. The studied dithiolones were better H2S donors than the corresponding dithiolethiones, and the addition of glutathione to the incubations strongly increased H2S formation. A possible mechanism for this effect of GSH is proposed on the basis of results obtained from reactions of GSH with 5-(p-methoxyphenyl)-3H-1,2-dithiole-3-one-1-sulfoxide, a metabolite of the choleretic and sialologic drug Sulfarlem.


Subject(s)
Anethole Trithione/pharmacokinetics , Aryl Hydrocarbon Hydroxylases/metabolism , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Hydrogen Sulfide/chemistry , Microsomes, Liver/enzymology , Thiones/pharmacokinetics , Anethole Trithione/chemistry , Animals , Glutathione/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Oxidation-Reduction , Rats , Thiones/chemistry
6.
Mol Psychiatry ; 25(6): 1245-1259, 2020 06.
Article in English | MEDLINE | ID: mdl-31619760

ABSTRACT

Current antidepressants act principally by blocking monoamine reuptake by high-affinity transporters in the brain. However, these antidepressants show important shortcomings such as slow action onset and limited efficacy in nearly a third of patients with major depression disorder. Here, we report the development of a prodrug targeting organic cation transporters (OCT), atypical monoamine transporters recently implicated in the regulation of mood. Using molecular modeling, we designed a selective OCT2 blocker, which was modified to increase brain penetration. This compound, H2-cyanome, was tested in a rodent model of chronic depression induced by 7-week corticosterone exposure. In male mice, prolonged administration of H2-cyanome induced positive effects on several behaviors mimicking symptoms of depression, including anhedonia, anxiety, social withdrawal, and memory impairment. Importantly, in this validated model, H2-cyanome compared favorably with the classical antidepressant fluoxetine, with a faster action on anhedonia and better anxiolytic effects. Integrated Z-scoring across these depression-like variables revealed a lower depression score for mice treated with H2-cyanome than for mice treated with fluoxetine for 3 weeks. Repeated H2-cyanome administration increased ventral tegmental area dopaminergic neuron firing, which may underlie its rapid action on anhedonia. H2-cyanome, like fluoxetine, also modulated several intracellular signaling pathways previously involved in antidepressant response. Our findings provide proof-of-concept of antidepressant efficacy of an OCT blocker, and a mechanistic framework for the development of new classes of antidepressants and therapeutic alternatives for resistant depression and other psychiatric disturbances such as anxiety.


Subject(s)
Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Organic Cation Transport Proteins/antagonists & inhibitors , Anhedonia/drug effects , Animals , Antidepressive Agents/administration & dosage , Antidepressive Agents/pharmacokinetics , Anxiety/drug therapy , Disease Models, Animal , Fluoxetine/therapeutic use , Humans , Male , Memory/drug effects , Mice
7.
Int J Mol Sci ; 19(7)2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30012976

ABSTRACT

The influence of Arginine 117 of human cytochrome P450 2J2 in the recognition of ebastine and a series of terfenadone derivatives was studied by site-directed mutagenesis. R117K, R117E, and R117L mutants were produced, and the behavior of these mutants in the hydroxylation of ebastine and terfenadone derivatives was compared to that of wild-type CYP2J2. The data clearly showed the importance of the formation of a hydrogen bond between R117 and the keto group of these substrates. The data were interpreted on the basis of 3D homology models of the mutants and of dynamic docking of the substrates in their active site. These modeling studies also suggested the existence of a R117-E222 salt bridge between helices B' and F that would be important for maintaining the overall folding of CYP2J2.


Subject(s)
Arginine/genetics , Cytochrome P-450 Enzyme System/genetics , Molecular Docking Simulation , Mutation , Arginine/chemistry , Arginine/metabolism , Butyrophenones/chemistry , Butyrophenones/metabolism , Catalytic Domain , Cytochrome P-450 CYP2J2 , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Humans , Hydrogen Bonding , Hydroxylation , Molecular Structure , Piperidines/chemistry , Piperidines/metabolism , Protein Conformation , Substrate Specificity
8.
Drug Metab Dispos ; 46(10): 1390-1395, 2018 10.
Article in English | MEDLINE | ID: mdl-30018103

ABSTRACT

A study of the metabolism of anethole dithiolethione (ADT, 5-(p-methoxyphenyl)-3H-1,2-dithiole-3-thione) by rat and human liver microsomes showed the formation of the corresponding S-oxide and the S-oxide of desmethyl-ADT (dmADT, 5-(p-hydroxyphenyl)-3H-1,2-dithiole-3-thione), and of p-methoxy-acetophenone (pMA) and p-hydroxy-acetophenone (pHA), in addition to the previously described metabolites, dmADT, anethole dithiolone (ADO, 5-(p-methoxyphenyl)-3H-1,2-dithiole-3-one) and its demethylated derivative dmADO [5-(p-hydroxyphenyl)-3H-1,2-dithiole-3-one]. The microsomal metabolism of ADO under identical conditions led to dmADO and to pMA and pHA. The metabolites of ADT derive from two competing oxidative pathways: an O-demethylation catalyzed by cytochromes P450 and an S-oxidation mainly catalyzed by flavin-dependent monooxygenases (FMO) and, to a minor extent, by CYP enzymes. The most active human CYP enzymes for ADT demethylation appeared to be CYP1A1, 1A2, 1B1, 2C9, 2C19, and 2E1. ADT S-oxidation is catalyzed by FMO 1 and 3, and to a minor extent by CYP enzymes such as CYP3A4.


Subject(s)
Anethole Trithione/metabolism , Cytochrome P-450 Enzyme System/metabolism , FMN Reductase/metabolism , Microsomes, Liver/metabolism , Mixed Function Oxygenases/metabolism , Animals , Demethylation , Humans , Male , Metabolomics , Oxidation-Reduction , Rats , Rats, Sprague-Dawley
9.
Chem Sci ; 9(1): 70-78, 2018 Jan 07.
Article in English | MEDLINE | ID: mdl-29629075

ABSTRACT

Organometallic compounds bearing the redox motif [ferrocenyl-ene-phenol] have very promising antiproliferative properties which have been further improved by incorporating pertinent substituents able to engender new mechanisms. Here we show that novel ferrociphenols bearing a hydroxypropyl chain exhibit strong antiproliferative effects, in most cases much better than those of cisplatin, tamoxifen, or of previously described ferrociphenols devoid of this terminal OH. This is illustrated, in the case of one of these compounds, by its IC50 values of 110 nM for MDA-MB-231 triple negative breast cancer cells and of 300 nM for cisplatin-resistant A2780cisR human ovarian cancer cells, and by its GI50 values lower than 100 nM towards a series of melanoma and renal cancer cell lines of the NCI-60 panel. Interestingly, oxidative metabolism of these hydroxypropyl-ferrociphenols yields two kinds of quinone methides (QMs) that readily react with various nucleophiles, such as glutathione, to give 1,6- and 1,8-adducts. Protonation of these quinone methides generates numerous reactive metabolites leading eventually to many rearrangement and cleavage products. This unprecedented and fully characterized metabolic profile involving a wide range of electrophilic metabolites that should react with cell macromolecules may be linked to the remarkable profile of antiproliferative activities of this new series. Indeed, the great diversity of unexpected reactive metabolites found upon oxidation will allow them to adapt to various situations present in the cancer cell. These data initiate a novel strategy for the rational design of anticancer molecules, thus opening the way to new organometallic potent anticancer drug candidates for the treatment of chemoresistant cancers.

10.
Int J Mol Sci ; 18(7)2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28726718

ABSTRACT

In some cases, the formation of reactive species from the metabolism of xenobiotics has been linked to toxicity and therefore it is imperative to detect potential bioactivation for candidate drugs during drug discovery. Reactive species can covalently bind to trapping agents in in vitro incubations of compound with human liver microsomes (HLM) fortified with ß-nicotinamide adenine dinucleotide phosphate (NADPH), resulting in a stable conjugate of trapping agent and reactive species, thereby facilitating analytical detection and providing evidence of short-lived reactive metabolites. Since reactive metabolites are typically generated by cytochrome P450 (CYP) oxidation, it is important to ensure high concentrations of trapping agents are not inhibiting the activities of CYP isoforms. Here we assessed the inhibitory properties of fourteen trapping agents against the major human CYP isoforms (CYP1A2, 2C9, 2C19, 2D6 and 3A). Based on our findings, eleven trapping agents displayed inhibition, three of which had IC50 values less than 1 mM (2-mercaptoethanol, N-methylmaleimide and N-ethylmaleimide (NEM)). Three trapping agents (dimedone, N-acetyl-lysine and arsenite) did not inhibit CYP isoforms at concentrations tested. To illustrate effects of CYP inhibition by trapping agents on reactive intermediate trapping, an example drug (ticlopidine) and trapping agent (NEM) were chosen for further studies. For the same amount of ticlopidine (1 µM), increasing concentrations of the trapping agent NEM (0.007-40 mM) resulted in a bell-shaped response curve of NEM-trapped ticlopidine S-oxide (TSO-NEM), due to CYP inhibition by NEM. Thus, trapping studies should be designed to include several concentrations of trapping agent to ensure optimal trapping of reactive metabolites.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Sulfur/pharmacology , Chromatography, Liquid , Cytochrome P-450 Enzyme Inhibitors/chemistry , Female , Humans , Inhibitory Concentration 50 , Male , Microsomes, Liver/metabolism , Oxidation-Reduction , Protein Isoforms , Sulfur/chemistry , Tandem Mass Spectrometry , Ticlopidine/chemistry , Ticlopidine/pharmacology
11.
Angew Chem Int Ed Engl ; 55(35): 10431-4, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27276169

ABSTRACT

Ferrociphenols (FCs) and their oxidized, electrophilic quinone methide metabolites (FC-QMs) are organometallic compounds related to tamoxifen that exhibit strong antiproliferative properties. To evaluate the reactivity of FC-QMs toward cellular nucleophiles, we studied their reaction with selected thiols. A series of new compounds resulting from the addition of these nucleophiles, the FC-SR adducts, were thus synthesized and completely characterized. Such conjugates are formed upon metabolism of FCs by liver microsomes in the presence of NADPH and thiols. Some of the FC-SR adducts exhibit antiproliferative properties comparable to those of their FC precursors. Under oxidizing conditions they either revert to their FC-QM precursors or transform into new quinone methides (QMs) containing the SR moiety, FC-SR-QM. These results provide interesting data about the reactivity and mechanism of antiproliferative effects of FCs, and also open the way to a new series of organometallic antitumor compounds.

12.
Chem Res Toxicol ; 28(6): 1338-45, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25970225

ABSTRACT

The antithrombotics of the tetrahydrothienopyridine series, clopidogrel and prasugrel, are prodrugs that must be metabolized in two steps to become pharmacologically active. The first step is the formation of a thiolactone metabolite. The second step is a further oxidation with the formation of a thiolactone sulfoxide whose hydrolytic opening leads to a sulfenic acid that is eventually reduced into the corresponding active cis thiol. Very few data were available on the formation of the isomer of the active cis thiol having a trans configuration of the double bond, the most striking result in that regard being that both cis and trans thiols were formed upon the metabolism of clopidogrel by human liver microsomes in the presence of glutathione (GSH), whereas only the cis thiol was detected in the sera of patients treated with this drug. This article shows that trans thiols are also formed upon the microsomal metabolism of prasugrel or its thiolactone metabolite in the presence of GSH and that metabolites having the trans configuration of the double bond are only formed when microsomal incubations are done in the presence of thiols, such as GSH, N-acetyl-cysteine, and mercaptoethanol. Intermediate formation of thioesters resulting from the reaction of GSH with the thiolactone sulfoxide metabolite appears to be responsible for trans thiol formation. Addition of human liver cytosol to the microsomal incubations led to a dramatic decrease of the formation of the trans thiol metabolites. These data suggest that cytosolic esterases would accelerate the hydrolytic opening of thiolactone sulfoxide intermediates and disfavor the formation of thioesters resulting from the reaction of these intermediates with GSH that is responsible for trans isomer formation. This would explain why trans thiols have not been detected in the sera of patients treated with clopidogrel.


Subject(s)
Antithrombins/metabolism , Prasugrel Hydrochloride/chemistry , Prasugrel Hydrochloride/metabolism , Prodrugs/metabolism , Sulfhydryl Compounds/metabolism , Ticlopidine/analogs & derivatives , Antithrombins/chemistry , Clopidogrel , Glutathione/chemistry , Glutathione/metabolism , Humans , Microsomes, Liver/metabolism , Molecular Structure , Prodrugs/chemistry , Stereoisomerism , Sulfhydryl Compounds/chemistry , Ticlopidine/chemistry , Ticlopidine/metabolism
13.
ChemMedChem ; 10(6): 981-90, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25882581

ABSTRACT

Ferrociphenols have been found to have high antiproliferative activity against estrogen-independent breast cancer cells. The rat and human liver microsome-mediated metabolism of three compounds of the ferrocifen (FC) family, 1,1-bis(4-hydroxyphenyl)-2-ferrocenyl-but-1-ene (FC1), 1-(4-hydroxyphenyl)-1-(phenyl)-2-ferrocenyl-but-1-ene (FC2), and 1-[4-(3-dimethylaminopropoxy)phenyl]-1-(4-hydroxyphenyl)-2-ferrocenyl-but-1-ene (FC3), was studied. Three main metabolite classes were identified: quinone methides (QMs) deriving from two-electron oxidation of FCs, cyclic indene products (CPs) deriving from acid-catalyzed cyclization of QMs, and allylic alcohols (AAs) deriving from hydroxylation of FCs. These metabolites are generated by cytochromes P450 (P450s), as shown by experiments with either N-benzylimidazole as a P450 inhibitor or recombinant human P450s. Such P450-dependent oxidation of the phenol function and hydroxylation of the allylic CH2 group of FCs leads to the formation of QM and AA metabolites, respectively. Some of the new ferrociphenols obtained in this study were found to exhibit remarkable antiproliferative effects toward MDA-MB-231 hormone-independent breast cancer cells.


Subject(s)
Antineoplastic Agents, Phytogenic/metabolism , Ferrous Compounds/metabolism , Tamoxifen/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclization , Cytochrome P-450 Enzyme System/metabolism , Humans , Metallocenes , Microsomes/metabolism , Oxidation-Reduction
14.
Chem Res Toxicol ; 26(5): 794-802, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23527615

ABSTRACT

The antithrombotics of the tetrahydrothienopyridine series, clopidogrel and prasugrel, are prodrugs that must be metabolized in two steps to become pharmacologically active. The first step is the formation of a thiolactone metabolite. The second step is a cytochrome P450 (P450)-dependent oxidation of this thiolactone resulting in the formation of a sulfenic acid that is eventually reduced into the corresponding active thiol. It has been postulated that the sulfenic acid metabolite resulted from a nucleophilic attack of water on a highly reactive thiolactone sulfoxide derived from P450-dependent oxidation of the thiolactone primary metabolite. The data described in the present article are in complete agreement with this proposition as they show that it was possible to trap these thiolactone sulfoxides by a series of nucleophiles such as amines, thiols, or cyclopentane-1,3-dione (CPDH), an equivalent of dimedone that is used as a sulfenic acid trapping agent. HPLC-MS studies showed that various bis-adducts having incorporated two nucleophile molecules were formed in these reactions. One of them that resulted from the oxidation of 2-oxo-prasugrel by human liver microsomes in the presence of ethanolamine and CPDH was isolated and completely characterized by (1)H and (13)C NMR spectroscopy in addition to MS and MS(2) spectrometry. All metabolites derived from an attack of H2O or an amine at the CO carbon of the intermediate thiolactone sulfoxide existed as a mixture of two diastereomers having a cis configuration of the double bond, whereas those formed in the presence of thiols appeared as a mixture of four diastereomers with a cis or trans configuration of the double bond. This led us to propose tentative mechanisms for the previously reported formation of trans isomers of the active thiol metabolite of clopidogrel upon microsomal metabolism of this antithrombotic in the presence of thiols. The results described in this article showed that thiolactone sulfoxides are formed as reactive metabolites during the metabolism of clopidogrel and prasugrel and are able to react as bis-electrophiles with a variety of nucleophiles. The possible implications of the formation of these reactive metabolites in the pharmacological and/or secondary toxic effects of these drugs remain to be studied.


Subject(s)
Lactones/metabolism , Piperazines/metabolism , Prodrugs/metabolism , Sulfoxides/metabolism , Thiophenes/metabolism , Ticlopidine/analogs & derivatives , Clopidogrel , Cytochrome P-450 Enzyme System/metabolism , Humans , Lactones/chemical synthesis , Lactones/chemistry , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Oxidation-Reduction , Piperazines/chemistry , Prasugrel Hydrochloride , Prodrugs/chemistry , Sulfoxides/chemical synthesis , Sulfoxides/chemistry , Thiophenes/chemistry , Ticlopidine/chemistry , Ticlopidine/metabolism
15.
Chem Res Toxicol ; 25(5): 1058-65, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22482514

ABSTRACT

The mechanism generally admitted for the bioactivation of the antithrombotic prodrug, prasugrel, 1c, is its two-step enzymatic conversion into a biologically active thiol metabolite. The first step is an esterase-catalyzed hydrolysis of its acetate function leading to a thiolactone metabolite 2c. The second step was described as a cytochrome P450 (P450)-dependent oxidative opening of the thiolactone ring of 2c, with intermediate formation of a reactive sulfenic acid metabolite that is eventually reduced to the corresponding active thiol 3c. This article describes a detailed study of the metabolism of 1c by human liver microsomes and human sera, with an analysis by HPLC-MS under conditions allowing a complete separation of the thiol metabolite isomers, after derivatization with 3'-methoxy phenacyl bromide. It shows that there are two competing metabolic pathways for the opening of the 2c thiolactone ring. The major one, which was previously described, results from a P450- and NADPH-dependent redox bioactivation of 2c and leads to 3c, two previously reported thiol diastereomers bearing an exocyclic double bond. It occurs with NADPH-supplemented human liver microsomes but not with human sera. The second one results from a hydrolysis of 2c and leads to an isomer of 3c, 3c endo, in which the double bond has migrated from an exocyclic to an endocyclic position in the piperidine ring. It occurs both with human liver microsomes and human sera, and does not require NADPH. However, it requires Ca(2+) and is inhibited by paraoxon, which suggests that it is catalyzed by a thioesterase such as PON-1. Chemical experiments have confirmed that hydrolytic opening of thiolactone 2c exclusively leads to derivatives of the endo thiol isomer 3c endo.


Subject(s)
Piperazines/metabolism , Piperazines/pharmacokinetics , Platelet Aggregation Inhibitors/metabolism , Platelet Aggregation Inhibitors/pharmacokinetics , Prodrugs/metabolism , Prodrugs/pharmacokinetics , Thiophenes/metabolism , Thiophenes/pharmacokinetics , Biotransformation , Humans , Microsomes, Liver/metabolism , Piperazines/chemistry , Platelet Aggregation Inhibitors/chemistry , Prasugrel Hydrochloride , Prodrugs/chemistry , Purinergic P2Y Receptor Antagonists/chemistry , Purinergic P2Y Receptor Antagonists/metabolism , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Thiophenes/chemistry
16.
Chem Res Toxicol ; 25(2): 348-56, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22103858

ABSTRACT

The mechanism generally admitted for the bioactivation of the antithrombotic prodrug, clopidogrel, is its two-step enzymatic conversion into a biologically active thiol metabolite. The first step is a classical cytochrome P450 (P450)-dependent monooxygenation of its thiophene ring leading to 2-oxo-clopidogrel, a thiolactone metabolite. The second step was described as a P450-dependent oxidative opening of the thiolactone ring of 2-oxo-clopidogrel, with intermediate formation of a reactive sulfenic acid metabolite that is eventually reduced to the corresponding thiol 4b. A very recent paper published in Nat. Med. (Bouman et al., (2011) 17, 110) reported that the second step of clopidogrel bioactivation was not catalyzed by P450 enzymes but by paraoxonase-1(PON-1) and that PON-1 was a major determinant of clopidogrel efficacy. The results described in the present article show that there are two metabolic pathways for the opening of the thiolactone ring of 2-oxo-clopidogrel. The major one, that was previously described, results from a P450-dependent redox bioactivation of 2-oxo-clopidogrel and leads to 4b cis, two previously reported thiol diastereomers bearing an exocyclic double bond. The second, minor one, results from a hydrolysis of 2-oxo-clopidogrel, which seems to be dependent on PON-1, and leads to an isomer of 4b cis, 4b "endo", in which the double bond has migrated from an exocyclic to an endocyclic position in the piperidine ring. These results were obtained from a detailed study of the metabolism of 2-oxo-clopidogrel by human liver microsomes and human sera and analysis by HPLC-MS under conditions allowing a complete separation of the thiol metabolite isomers, either as such or after derivatization with 3'-methoxy phenacyl bromide or N-ethyl maleimide (NEM). These results also show that the major bioactive thiol isomer found in the plasma of clopidogrel-treated patients derives from 2-oxo-clopidogrel by the P450-dependent pathway. Finally, chemical experiments on 2-oxo-clopidogrel showed that this thiolactone is in equilibrium with its tautomer having a double bond inside the piperidine ring and that nucleophiles such as CH(3)O(-) preferentially react on the thioester function of this tautomer. This allowed us to understand why 4b cis has to be formed via an oxidative opening of 2-oxo-clopidogrel thiolactone, whereas a hydrolytic opening of this thiolactone ring leads to the "endo" thiol isomer 4b "endo".


Subject(s)
Aryldialkylphosphatase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Platelet Aggregation Inhibitors/metabolism , Sulfhydryl Compounds/metabolism , Ticlopidine/analogs & derivatives , Biotransformation , Catalysis , Clopidogrel , Humans , Isomerism , Microsomes, Liver/metabolism , Serum/metabolism , Ticlopidine/metabolism
18.
Chem Res Toxicol ; 24(3): 412-7, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21375241

ABSTRACT

We present a reactive metabolite detection assay based on the use of deuterium labeled/unlabeled bis-methyl glutathione (GSH) esters (GSH(CH(3)/CD(3))(2)) and nanoliquid chromatography coupled online with electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS). Compared with glutathione, neutralization of the carboxylic acid groups by esterification introduced a mass difference of 6, which facilitated the identification of trapped metabolites and improved the intensity of the mass spectrometry signal in positive ionization mode. The peptides allowed for the trapping of soft electrophilic reactive metabolites generated in vitro by incubation with acetaminophen, carbamazepine (CBZ), NADPH, and microsomes.


Subject(s)
Acetaminophen/metabolism , Carbamazepine/metabolism , Chromatography, High Pressure Liquid/methods , Glutathione/analogs & derivatives , Spectrometry, Mass, Electrospray Ionization/methods , Acetaminophen/chemistry , Animals , Carbamazepine/chemistry , Deuterium/chemistry , Deuterium Exchange Measurement , Esterification , Glutathione/analysis , Isotope Labeling , Male , Microsomes/metabolism , NADP/chemistry , NADP/metabolism , Nanotechnology , Rats , Rats, Sprague-Dawley
19.
Arch Biochem Biophys ; 507(1): 174-85, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-20869346

ABSTRACT

Sulfenic acid reactive intermediates are formed during the oxidation of cysteine residues of proteins and play key roles in enzyme catalysis, redox homeostasis and regulation of cell signalling. However few data are presently available on the formation and fate of sulfenic acids as reactive intermediates during the metabolism of xenobiotics. This article is a review of the xenobiotic metabolism situations in which the intermediate formation of a sulfenic acid has been reported. Formation of these intermediates has been either proposed on the basis of the isolation of products possibly deriving from sulfenic acids or shown after trapping of the sulfenic acid by specific nucleophiles. This review indicates the different mechanisms by which a sulphur-containing xenobiotic can be metabolized with the intermediate formation of a sulfenic acid. It also indicates the different possible fates of these sulfenic acids that have been reported in the literature. Finally, it discusses the possible implications of the formation of xenobiotic-derived sulfenic acid reactive metabolites in pharmacology and toxicology.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Sulfenic Acids/metabolism , Sulfur Compounds/metabolism , Xenobiotics/metabolism , Animals , Humans , Oxidation-Reduction , Sulfenic Acids/chemistry , Sulfur Compounds/chemistry , Xenobiotics/chemistry
20.
Chem Res Toxicol ; 23(7): 1268-74, 2010 Jul 19.
Article in English | MEDLINE | ID: mdl-20557086

ABSTRACT

Metabolic activation of the tetrahydro-thienopyridine antithrombotic prodrug, prasugrel, involves two steps: an esterase-dependent hydrolysis of its acetate function leading to thiolactone 6 and a cytochrome P450 (P450)-catalyzed oxidative cleavage of this thiolactone. This article shows that this second step involves the intermediate formation of a sulfenic acid 9 that has been trapped by dimedone during the metabolism of prasugrel by rat and human liver microsomes. The dimedone adduct has been characterized by mass spectrometry (MS) and (1)H and (13)C NMR spectroscopy. This article also describes the fate of the sulfenic acid intermediate in liver microsomes in the presence of various nucleophiles. Its reaction with a water-soluble phosphine cleanly leads to the corresponding thiol 7, which has been reported as the pharmacologically active metabolite of prasugrel. Its reaction with glutathione (GSH) leads to mixed disulfide 11, which may further react with GSH in excess to provide thiol 7. Experiments using microsomal incubations in the presence of (18)O(2) and (18)OH(2) have provided the first data on the mechanism of the P450-catalyzed oxidative cleavage of thiolactones such as 6. They indicate that sulfenic acid 9 is derived from a nucleophilic attack of H(2)O either directly on the electrophilic keto group of intermediate keto-sulfoxide 12, which is formed by P450-dependent S-oxidation of 6, or on the keto group of a cyclic sulfenic ester 13, which could derive from the rearrangement of 12. These data provide a first detailed mechanism for the metabolic activation of prasugrel to its pharmacologically active metabolites such as thiol 7.


Subject(s)
Fibrinolytic Agents/metabolism , Piperazines/metabolism , Prodrugs/metabolism , Sulfenic Acids/metabolism , Thiophenes/metabolism , Animals , Cyclohexanones/analysis , Cyclohexanones/chemistry , Cytochrome P-450 Enzyme System/metabolism , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/toxicity , Glutathione/metabolism , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microsomes, Liver/metabolism , Oxidation-Reduction , Piperazines/chemistry , Piperazines/toxicity , Prasugrel Hydrochloride , Prodrugs/chemistry , Prodrugs/toxicity , Rats , Thiophenes/chemistry , Thiophenes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...