Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 16(7): e0255291, 2021.
Article in English | MEDLINE | ID: mdl-34329352

ABSTRACT

The diversity of the Penaeus vannamei mitochondrial genome has still been poorly characterized, there are no validated mitochondrial markers available for populational studies, and the heteroplasmy has not yet been investigated in this species. In this study, metagenomic reads extracted from the muscle of a single individual were used to assemble the mitochondrial genome (mtDNA). These data associated with mitochondrial genomes previously described allowed to evaluate the inter-individual variability and heteroplasmy. Comparison among 45 mtDNA control regions led to the detection of conserved and variable segments and the characterization of two hypervariable regions. The analysis of diversity revealed mostly low frequency polymorphisms, and heteroplasmy was found in practically all mitochondrial genes, with a high occurrence of indels. These results indicate that the design of mitochondrial markers for P. vannamei must be done with caution. The mapping of conserved and variable regions and the characterization of heteroplasmy presented here will contribute to increasing the efficiency of mitochondrial markers for population or individual studies.


Subject(s)
Genome, Mitochondrial , Penaeidae/genetics , Polymorphism, Genetic , Animals , High-Throughput Nucleotide Sequencing
2.
Virus Res ; 245: 52-61, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29258747

ABSTRACT

White spot syndrome virus (WSSV) has been the cause of great economic losses in world shrimp farming. In this work the genome of a Brazilian WSSV isolate was determined from direct sequencing of total DNA extracted from an infected whiteleg shrimp, and assembled based on a chimera template approach. Comparisons between WSSV-BR and other isolates revealed that the Brazilian virus has a relatively small genome, and is very similar to isolates from Thailand and Mexico. A phylogenetic relationship using different approaches has demonstrated that these isolates share a common evolutionary history. An analysis of conflicting phylogenetic signals also considering genomes of other isolates revealed that the evolutionary history of WSSV may be related to recombination events. We observed that these events can also be traced at some level by analyzing the homologous regions in the WSSV genome. The existence of recombination events introduces a new point of view that must be considered in the evolutionary history of WSSV.


Subject(s)
DNA, Viral/genetics , Genes, Viral , Genome, Viral , Penaeidae/virology , Phylogeny , White spot syndrome virus 1/genetics , Animals , Biological Evolution , Brazil , Chromosome Mapping , Gene Ontology , Genome Size , Homologous Recombination , Mexico , Molecular Sequence Annotation , Sequence Analysis, DNA , Thailand , White spot syndrome virus 1/classification , White spot syndrome virus 1/isolation & purification
3.
Virus Res ; 211: 159-64, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26497779

ABSTRACT

Analyzing the positions of 2A-like polypeptide cleavage sites in all available genomes of arthropod totiviruses we propose the limits of all ORF1 coding sequences and observed that two proteins previously predicted in infectious myonecrosis virus genome are unique in the arthropod totiviruses group. A putative protein cleavage site upstream the major capsid protein was also identified only in these genomes. In addition, protein models generated using ab initio and threading approaches revealed conserved structures possibly related to formation of viral protrusions and RNA packaging, clarifying the mechanisms involved in the extracellular transmission. These data appoints that the group formed by arthropod totiviruses are sufficient distinctive to be clustered in new genus belonging to the Totiviridae family, in agreement with previous phylogenetic analysis.


Subject(s)
Arthropods/virology , Totiviridae/genetics , Viral Proteins/genetics , Amino Acid Sequence , Animals , Molecular Sequence Data , Open Reading Frames , Phylogeny , Sequence Alignment , Totiviridae/chemistry , Totiviridae/classification , Totiviridae/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism
4.
Virus Res ; 203: 66-71, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25849112

ABSTRACT

Infectious myonecrosis virus (IMNV) has been the cause of many losses in shrimp farming since 2002, when the first myonecrosis outbreak was reported at Brazilian's northeast coast. Two additional genomes of Brazilian IMNV isolates collected in 2009 and 2013 were sequenced and analyzed in the present study. The sequencing revealed extra 643 bp and 22 bp, at 5' and 3' ends of IMNV genome respectively, confirming that its actual size is at least 8226 bp long. Considering these additional sequences in genome extremities, ORF1 can starts at nt 470, encoding a 1708 aa polyprotein. Computational predictions reveal two stem loops and two pseudoknots in the 5' end and a putative stem loop and a slippery motif located at 3' end, indicating that these regions can be involved in the start and termination of translation. Through a careful phylogenetic analysis, a higher genetic variability among Brazilian isolates could be observed, comparing with Indonesian IMNV isolates. It was also observed that the most variable region of IMNV genome is located in the first half of ORF1, coinciding with a region which probably encodes the capsid protrusions. The results presented here are a starting point to elucidate the viral's translational regulation and the mechanisms involved in virulence.


Subject(s)
Gene Order , Genome, Viral , Penaeidae/virology , Totiviridae/classification , Totiviridae/isolation & purification , Animals , Base Sequence , Brazil , Cluster Analysis , Molecular Sequence Data , Nucleic Acid Conformation , Open Reading Frames , Phylogeny , Protein Biosynthesis , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology , Totiviridae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL