Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters










Publication year range
1.
Commun Chem ; 7(1): 103, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724724

ABSTRACT

Identifying the short-lived intermediates and reaction mechanisms of multi-channel radical cation fragmentation processes remains a current and important challenge to understanding and predicting mass spectra. We find that coherent oscillations in the femtosecond time-dependent yields of several product ions following ultrafast strong-field ionization represent spectroscopic signatures that elucidate their mechanism of formation and identify the intermediate(s) they originate from. Experiments on endo-dicyclopentadiene show that vibrational frequencies from various intermediates are mapped onto their resulting products. Aided by ab initio methods, we identify the vibrational modes of both the cleaved and intact molecular ion intermediates. These results confirm stepwise and concerted fragmentation pathways of the dicyclopentadiene ion. This study highlights the power of tracking the femtosecond dynamics of all product ions simultaneously and sheds further light onto one of the fundamental reaction mechanisms in mass spectrometry, the retro-Diels Alder reaction.

2.
Acc Chem Res ; 57(6): 845-854, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38366970

ABSTRACT

ConspectusMass spectrometry is a powerful analytical method capable of identifying compounds given a minute amount of material. The fragmentation pattern that results following molecular activation serves as a fingerprint that can be matched to a database compound for identification. Over the past half century, studies have addressed and, in many cases, named the chemical reactions that lead to some of the principal fragment ions. Theories have been developed to predict the observed fragmentation patterns, many of which assume that energy redistributes prior to dissociation. However, the existence of rearrangements and nonergodic processes complicates the prediction of fragmentation patterns and the identification of compounds that have yet to be entered into a curated database. To date, very few studies have addressed the time-dependent nature of the fragmentation of radical cations and, in particular, processes occurring with picosecond or shorter time scales where one expects to find nonergodic reactions.This Account focuses on a novel approach that enables tracking of molecular fragmentation in electron-ionization mass spectrometry with ultrafast time resolution. The two challenges that have prevented the time-resolved studies following electron ionization are the random impact parameter and moment of ionization of each molecule. In addition, medium-sized molecules can produce fragmentation patterns with tens if not hundreds of product ions. Spectroscopically interrogating all of these ions as a function of time is another major challenge. We describe strong field disruptive probing, a method that ionizes molecules on a femtosecond time scale and allows us to track in time the formation of all fragment ions simultaneously.Molecular fragmentation following ionization can occur on a very wide range of time scales. Metastable ions can survive from nanoseconds to microseconds; reactions that depend on vibrational energy redistribution can take picoseconds to nanoseconds; and direct dissociation processes and some rearrangements can take place in femtoseconds to picoseconds. All of these processes depend on the dynamics that occur during attoseconds and femtoseconds following the ionization process. Following a discussion of these time scales, we provide three examples of fragmentations that have been studied with femtosecond time resolution. Each of these examples include unforeseen reaction dynamics that involve a nonergodic process, highlighting the importance of time resolution in mass spectrometry. Finally, we explore future challenges and unresolved questions in mass spectrometry and, more broadly, in the domain of electron-initiated chemical reactions.

3.
Nat Commun ; 15(1): 74, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168047

ABSTRACT

An essential problem in photochemistry is understanding the coupling of electronic and nuclear dynamics in molecules, which manifests in processes such as hydrogen migration. Measurements of hydrogen migration in molecules that have more than two equivalent hydrogen sites, however, produce data that is difficult to compare with calculations because the initial hydrogen site is unknown. We demonstrate that coincidence ion-imaging measurements of a few deuterium-tagged isotopologues of ethanol can determine the contribution of each initial-site composition to hydrogen-rich fragments following strong-field double ionization. These site-specific probabilities produce benchmarks for calculations and answer outstanding questions about photofragmentation of ethanol dications; e.g., establishing that the central two hydrogen atoms are 15 times more likely to abstract the hydroxyl proton than a methyl-group proton to form H[Formula: see text] and that hydrogen scrambling, involving the exchange of hydrogen between different sites, is important in H2O+ formation. The technique extends to dynamic variables and could, in principle, be applied to larger non-cyclic hydrocarbons.

4.
J Phys Chem Lett ; 14(44): 10088-10093, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37917859

ABSTRACT

We report femtosecond time-resolved measurements of the McLafferty rearrangement following the strong-field tunnel ionization of 2-pentanone, 4-methyl-2-pentanone, and 4,4-dimethyl-2-pentanone. The pump-probe-dependent yields of the McLafferty product ion are fit to a biexponential function with fast (∼100 fs) and slow (∼10 ps) time constants, the latter of which is faster for the latter two compounds. Following nearly instantaneous ionization, the fast time scale is associated with rotation of the molecule to a six-membered cyclic intermediate that facilitates transfer of the γ-hydrogen, while the ∼50-100 times longer time scale is associated with a π-bond rearrangement and bond cleavage between the α- and ß-carbons to produce the enol cation. These experimental measurements are supported by ab initio molecular dynamics trajectories, which further confirm the time scale of this important stepwise reaction in mass spectrometry.

5.
J Phys Chem A ; 127(41): 8633-8638, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37813385

ABSTRACT

We examine the possibility that three hydrogen atoms in one plane of the cyclopropane dication come together in a concerted "ring-closing" mechanism to form H3+, a crucial cation in interstellar gas-phase chemistry. Ultrafast strong-field ionization followed by disruptive probing measurements indicates that the formation time of H3+ is 249 ± 16 fs. This time scale is not consistent with a concerted mechanism, but rather a process that is preceded by ring opening. Measurements on propene, an isomer of cyclopropane, reveal the H3+ formation time to be 225 ± 13 fs, a time scale similar to the H3+ formation time in cyclopropane. Ab initio molecular dynamics simulations and the fact that both dications share a common potential energy surface support the ring-opening mechanism. The reaction mechanism following double ionization of cyclopropane involves ring opening, then H-migration, and roaming of a neutral H2 molecule, which then abstracts a proton to form H3+. These results further our understanding of complex interstellar chemical reactions and gas-phase reaction dynamics relevant to electron ionization mass spectrometry.

6.
Nat Chem ; 15(9): 1202-1203, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37640852
7.
J Chem Phys ; 157(21): 214304, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36511542

ABSTRACT

Strong-field ionization, involving tunnel ionization and electron rescattering, enables femtosecond time-resolved dynamics measurements of chemical reactions involving radical cations. Here, we compare the formation of CH3S+ following the strong-field ionization of the isomers CH3SCN and CH3NCS. The former involves the release of neutral CN, while the latter involves an intramolecular rearrangement. We find the intramolecular rearrangement takes place on a single picosecond timescale and exhibits vibrational coherence. Density functional theory and coupled-cluster calculations on the neutral and singly ionized species help us determine the driving force responsible for intramolecular rearrangement in CH3NCS. Our findings illustrate the complexity that accompanies radical cation chemistry following electron ionization and demonstrate a useful tool for understanding cation dynamics after ionization.

8.
J Phys Chem A ; 126(47): 8851-8858, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36383030

ABSTRACT

Identifying and quantifying mixtures of compounds with very similar fragmentation patterns in their mass spectra presents a unique and challenging problem. In particular, the mass spectra of most per- and poly-fluoroalkyl substances (PFAS) lack a molecular ion. This complicates their identification, especially when using the absence of chromatographic separation. Here, we focus on linear, nonpolar, short-chain PFAS, which have received less attention than amphipathic PFAS despite their longer environmental lifetimes and greater global warming potentials. We identify and quantify n-C5F12 and n-C6F14 in binary mixtures by analyzing small changes in abundances of the main fragment ions following femtosecond tunnel laser ionization, without the need of chromatographic separation. Time-resolved femtosecond ionization mass spectrometry reveals that the metastable cation of both compounds undergoes predissociation within 1-2 ps of ion formation, with yields of C3F7+ showing evidence of coherent vibrational dynamics. These coherent oscillations are compared to low-level ion-state calculations and supported the idea that the oscillations in the C3F7+ ion yield are due to vibrations in the C5F12+• and C6F14+• radical cations and are associated with the predissociation dynamics of the metastable molecular ion. Surprisingly, we find that the fragment ions used for quantifying the mixtures have similar fragmentation dynamics. Conversely, the odd-electron C2F4+• fragment shows different time dependence between the two compounds, yet has negligible difference in the relative ion yield between the two compounds. Our findings indicate that femtosecond laser ionization may be a useful tool for identifying and quantifying mixtures of PFAS without the need of chromatography or high-resolution mass spectrometry.


Subject(s)
Fluorocarbons , Fluorocarbons/analysis , Mass Spectrometry/methods , Electrons , Cations
9.
Rev Sci Instrum ; 93(3): 033003, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35365005

ABSTRACT

Ultrafast science depends on different implementations of the well-known pump-probe method. Here, we provide a formal description of ultrafast disruptive probing, a method in which the probe pulse disrupts a transient species that may be a metastable ion or a transient state of matter. Disruptive probing has the advantage of allowing for simultaneous tracking of the yield of tens of different processes. Our presentation includes a numerical model and experimental data on multiple products resulting from the strong-field ionization of two different molecules, partially deuterated methanol and norbornene. The correlated enhancement and depletion signals between all the different fragmentation channels offer comprehensive information on photochemical reaction pathways. In combination with ion imaging and/or coincidence momentum imaging or as complementary to atom-specific probing or ultrafast diffraction methods, disruptive probing is a particularly powerful tool for the study of strong-field laser-matter interactions.


Subject(s)
Lasers
10.
J Phys Chem Lett ; 13(7): 1825-1832, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35171617

ABSTRACT

Cyanine molecules are important phototheranostic compounds given their high fluorescence yield in the near-infrared region of the spectrum. We report on the frequency and time-resolved spectroscopy of the S2 state of IR806, which demonstrates enhanced emission upon binding to the hydrophobic pocket of human serum albumin (HSA). From excitation-emission matrix spectra and electronic structure calculations, we identify the emission as one associated with a state having the polymethine chain twisted out of plane by 103°. In addition, we find that this configuration is significantly stabilized as the concentration of HSA increases. Spectroscopic changes associated with the S1 and S2 states of IR806 as a function of HSA concentration, as well as anisotropy measurements, confirm the formation of HSA dimers at concentrations greater than 10 µM. These findings imply that the longer-lived S2 state configuration can lead to more efficient phototherapy agents, and cyanine S2 spectroscopy may be a useful tool to determine the oligomerization state of HSA.


Subject(s)
Carbocyanines/chemistry , Serum Albumin, Human/chemistry , Binding Sites , Carbocyanines/metabolism , Density Functional Theory , Dimerization , Humans , Molecular Docking Simulation , Protein Binding , Serum Albumin, Human/metabolism , Spectrometry, Fluorescence , Thermodynamics
11.
J Phys Chem A ; 125(45): 9770-9784, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34747598

ABSTRACT

We report on the changes in the dual fluorescence of two cyanine dyes IR144 and IR140 as a function of viscosity and probe their internal conversion dynamics from S2 to S1 via their dependence on a femtosecond laser pulse chirp. Steady-state and time-resolved measurements performed in methanol, ethanol, propanol, ethylene glycol, and glycerol solutions are presented. Quantum calculations reveal the presence of three excited states responsible for the experimental observations. Above the first excited state, we find an excited state, which we designate as S1', that relaxes to the S1 minimum, and we find that the S2 state has two stable configurations. Chirp-dependence measurements, aided by numerical simulations, reveal how internal conversion from S2 to S1 depends on solvent viscosity and pulse duration. By combining solvent viscosity, transform-limited pulses, and chirped pulses, we obtain an overall change in the S2/S1 population ratio of a factor of 86 and 55 for IR144 and IR140, respectively. The increase in the S2/S1 ratio is explained by a two-photon transition to a higher excited state. The ability to maximize the population of higher excited states by delaying or bypassing nonradiative relaxation may lead to the increased efficiency of photochemical processes.

12.
J Phys Chem B ; 125(45): 12486-12499, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34752096

ABSTRACT

Several fluorene derivatives exhibit excited-state reactivity and relaxation dynamics that remain to be understood fully. We report here the spectral relaxation dynamics of two fluorene derivatives to evaluate the role of structural modification in the intramolecular relaxation dynamics and intermolecular interactions that characterize this family of chromophores. We have examined the time-resolved spectral relaxation dynamics of two compounds, NCy-FR0 and MK-FR0, in protic and aprotic solvents using steady-state and time-resolved emission spectroscopy and quantum chemical computations. Both compounds exhibit spectral relaxation characteristics similar to those seen in FR0, indicating that hydrogen bonding interactions between the chromophore and solvent protons play a significant role in determining the relaxation pathways available to three excited electronic states.


Subject(s)
Fluorenes , Hydrogen Bonding , Solutions , Solvents , Spectrometry, Fluorescence
13.
J Phys Chem B ; 125(44): 12242-12253, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34726920

ABSTRACT

Substituted fluorene structures have demonstrated unusual photochemical properties. Previous reports on the substituted fluorene Schiff base FR0-SB demonstrated super photobase behavior with a ΔpKb of ∼14 upon photoexcitation. In an effort to understand the basis for this unusual behavior, we have examined the electronic structure and relaxation dynamics of the structural precursor of FR0-SB, the aldehyde FR0, in protic and aprotic solvents using time-resolved fluorescence spectroscopy and quantum chemical calculations. The calculations show three excited singlet states in relatively close energetic proximity. The spectroscopic data are consistent with relaxation dynamics from these electronic states that depend on the presence and concentration of solvent hydroxyl functionality. These results underscore the central role of solvent hydrogen bonding to the FR0 aldehyde oxygen in mediating the relaxation dynamics within this molecule.


Subject(s)
Fluorenes , Schiff Bases , Hydrogen Bonding , Solvents , Spectrometry, Fluorescence
14.
J Chem Phys ; 155(4): 044303, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34340396

ABSTRACT

Ultrafast tunnel ionization enables femtosecond time-resolved dynamic measurements of the retro-Diels-Alder reactions of positively charged cyclohexene, norbornene, and dicyclopentadiene. Unlike the reaction times of 500-600 ps that are observed following UV excitation of neutral species, on the ionic potential energy surfaces, these reactions occur on a single picosecond timescale and, in some cases, exhibit vibrational coherence. In the case of norbornene, a 270 cm-1 vibrational mode is found to modulate the retro-Diels-Alder reaction.

15.
Opt Express ; 29(10): 14314-14325, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33985154

ABSTRACT

A pulse-shaper-based method for spectral phase measurement and compression with milliradian precision is proposed and tested experimentally. Measurements of chirp and third-order dispersion are performed and compared to theoretical predictions. The single-digit milliradian accuracy is benchmarked by a group velocity dispersion measurement of fused silica.

16.
J Chem Phys ; 153(22): 224301, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33317305

ABSTRACT

Two-photon excitation (TPE) is an attractive means for controlling chemistry in both space and time. Since isoenergetic one- and two-photon excitations (OPE and TPE) in non-centrosymmetric molecules are allowed to reach the same excited state, it is usually assumed that they produce similar excited-state reactivity. We compare the solvent-to-solute excited-state proton transfer of the super photobase FR0-SB following isoenergetic OPE and TPE. We find up to 62% increased reactivity following TPE compared to OPE. From steady-state spectroscopy, we rule out the involvement of different excited states and find that OPE and TPE spectra are identical in non-polar solvents but not in polar ones. We propose that differences in the matrix elements that contribute to the two-photon absorption cross sections lead to the observed enhanced isoenergetic reactivity, consistent with the predictions of our high-level coupled-cluster-based computational protocol. We find that polar solvent configurations favor greater dipole moment change between ground and excited states, which enters the probability for TPE as the absolute value squared. This, in turn, causes a difference in the Franck-Condon region reached via TPE compared to OPE. We conclude that a new method has been found for controlling chemical reactivity via the matrix elements that affect two-photon cross sections, which may be of great utility for spatial and temporal precision chemistry.

17.
Phys Chem Chem Phys ; 22(35): 19613-19622, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32936138

ABSTRACT

The significance of solvent structural factors in the excited-state proton transfer (ESPT) reactions of Schiff bases with alcohols is reported here. We use the super photobase FR0-SB and a series of primary, secondary, and tertiary alcohol solvents to illustrate the steric issues associated with solvent to photobase proton transfer. Steady-state and time-resolved fluorescence data show that ESPT occurs readily for primary alcohols, with a probability proportional to the relative -OH concentration. For secondary alcohols, ESPT is greatly diminished, consistent with the barrier heights obtained using quantum chemistry calculations. ESPT is not observed in the tertiary alcohol. We explain ESPT using a model involving an intermediate hydrogen-bonded complex where the proton is "shared" by the Schiff base and the alcohol. The formation of this complex depends on the ability of the alcohol solvent to achieve spatial proximity to and alignment with the FR0-SB* imine lone pair stabilized by the solvent environment.

18.
J Phys Chem B ; 123(40): 8448-8456, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31532676

ABSTRACT

We report on the motional and proton transfer dynamics of the super photobase FR0-SB in the series of normal alcohols C1 (methanol) through C8 (n-octanol) and ethylene glycol. Steady-state and time-resolved fluorescence data reveal that the proton abstraction dynamics of excited FR0-SB depend on the identity of the solvent and that the transfer of the proton from solvent to FR0-SB*, forming FR0-HSB+*, fundamentally alters the nature of interactions between the excited molecule and its surroundings. In its unprotonated state, solvent interactions with FR0-SB* are consistent with slip limit behavior, and in its protonated form, intermolecular interactions are consistent with a much stronger interaction of FR0-HSB+* with the deprotonated solvent RO-. We understand the excited-state population dynamics in the context of a kinetic model involving a transition state wherein FR0-HSB+* is still bound to the negatively charged alkoxide, prior to solvation of the two charged species. Data acquired in ethylene glycol confirm the hypothesis that the rotational diffusion dynamics of FR0-SB* are largely mediated by solvent viscosity while proton transfer dynamics are mediated by the lifetime of the transition state. Taken collectively, our results demonstrate that FR0-SB* extracts solvent protons efficiently and in a predictable manner, consistent with a ca. 3-fold increase in dipole moment upon photoexcitation as determined by ab initio calculations based on the equation-of-motion coupled-cluster theory.


Subject(s)
Alcohols/chemistry , Protons , Solvents/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Molecular , Molecular Conformation , Thermodynamics
19.
J Chem Phys ; 150(4): 044303, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30709246

ABSTRACT

Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H3 + from methanol under strong laser field excitation. We observe a significant and systematic enhanced production of H3 + when a negative 34 π phase step is applied near the low energy region of the laser spectrum and when a positive 34 π phase step is applied near the high energy region of the laser spectrum. In some cases, most notably the HCO+ fragment, we found the enhancement exceeded the yield measured for transform limited pulses. The observation of enhanced yield is surprising and far from the QCC prediction of yield suppression. The observed QCC enhancement implies an underlying strong field process responsible for polyatomic fragmentation controllable by easy to reproduce shaped pulses.

20.
J Am Chem Soc ; 141(4): 1735-1741, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30580520

ABSTRACT

Bacteriorhodopsin represents the simplest, and possibly most abundant, phototropic system requiring only a retinal-bound transmembrane protein to convert photons of light to an energy-generating proton gradient. The creation and interrogation of a microbial rhodopsin mimic, based on an orthogonal protein system, would illuminate the design elements required to generate new photoactive proteins with novel function. We describe a microbial rhodopsin mimic, created using a small soluble protein as a template, that specifically photoisomerizes all- trans to 13- cis retinal followed by thermal relaxation to the all- trans isomer, mimicking the bacteriorhodopsin photocycle, in a single crystal. The key element for selective isomerization is a tuned steric interaction between the chromophore and protein, similar to that seen in the microbial rhodopsins. It is further demonstrated that a single mutation converts the system to a protein photoswitch without chromophore photoisomerization or conformational change.


Subject(s)
Bacteriorhodopsins/chemistry , Biomimetics , Bacteriorhodopsins/metabolism , Light , Models, Molecular , Movement , Protein Conformation , Stereoisomerism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...