Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(19): 21276-21286, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764614

ABSTRACT

This study reports on the application of an extreme learning machine (ELM) in near-real-time kidney monitoring via urine neutrophil gelatinase-associated lipocalin (NGAL) detection with a 3D graphene electrode. This integration marks the first instance of combining a graphene-based electrode with machine learning to enhance the NGAL detection accuracy, building on our group's 2020 research. The methodology involves two key components: a graphene electrode functionalized with a lipocalin-2 antibody for NGAL detection and the ELM application for improved prediction accuracy by using urine analysis data. The results show a significant 15% increase in the area under the curve (AUC) for NGAL determination, with error reduction from ±6 to 0.54 ng/mL within a linear range of 2.7-140 ng/mL. The ELM also lowered the detection limit from 14.8 to 0.89 ng/mL and increased accuracy, precision, sensitivity, specificity, and F1 score for AKI prediction by 8.89, 30.69, 6.78, 9.94, and 19.07%, respectively. These findings underscore the efficacy of simple neural networks in enhancing graphene-based electrochemical sensors for AKI biomarkers. ELM was chosen for its optimal performance-resource balance, with a comparative analysis of ELM, support vector machines, multilayer perceptron, and random forest algorithms also included. This research suggests the potential for miniaturizing AI-enhanced sensors for practical applications.

2.
ACS Omega ; 9(17): 19591-19600, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708217

ABSTRACT

In this work, we report a new phenomenon in electrochemical systems whereby uniform current steps of 1 mA per 0.5 × 0.5 × 0.1 cm3 (width × width × depth) of electrode volume occurred during the electrodeposition of gold and silver nanoparticles onto 3D microporous graphene on nickel layers (GF/Ni) at room temperature. The effect was exhibited only at specific applied electrical potentials. The experiments (magnetic interference, temperature dependence, and surface area dependence) were repeated, and the results were reproducible. Finally, we proposed classical electrochemical theory using the Butler-Volmer equation and quantum theory using the Landauer formalism to describe this new effect. Both theories could be used to explain the experimental results: temperature dependence, surface area dependence, blocking effects, and external magnetic field dependence. In addition, the stepwise current presented in this work facilitates the trapping and supplying of a large amount of electric charge via an inherent magnetic field in a sharp time step (∼1 s). A video clip of the recorded effect can be found at https://youtu.be/pPJh45w1sUQ.

3.
Sensors (Basel) ; 23(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36991809

ABSTRACT

In this work, we report a low-cost and highly sensitive electrochemical sensor for detecting As(III) in water. The sensor uses a 3D microporous graphene electrode with nanoflowers, which enriches the reactive surface area and thus enhances its sensitivity. The detection range achieved was 1-50 ppb, meeting the US-EPA cutoff criteria of 10 ppb. The sensor works by trapping As(III) ions using the interlayer dipole between Ni and graphene, reducing As(III), and transferring electrons to the nanoflowers. The nanoflowers then exchange charges with the graphene layer, producing a measurable current. Interference by other ions, such as Pb(II) and Cd(II), was found to be negligible. The proposed method has potential for use as a portable field sensor for monitoring water quality to control hazardous As(III) in human life.

4.
Sci Rep ; 12(1): 1769, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110583

ABSTRACT

Non-invasive and accurate method for continuous blood glucose monitoring, the self-testing of blood glucose is in quest for better diagnosis, control and the management of diabetes mellitus (DM). Therefore, this study reports a multiple photonic band near-infrared (mbNIR) sensor augmented with personalized medical features (PMF) in Shallow Dense Neural Networks (SDNN) for the precise, inexpensive and pain free blood glucose determination. Datasets collected from 401 blood samples were randomized and trained with ten-fold validation. Additionally, a cohort of 234 individuals not included in the model training set were investigated to evaluate the performance of the model. The model achieved the accuracy of 97.8% along with 96.0% precision, 94.8% sensitivity and 98.7% specificity for DM classification based on a diagnosis threshold of 126 mg/dL for diabetes in fasting blood glucose. For non-invasive real-time blood glucose monitoring, the model exhibited ± 15% error with 95% confidence interval and the detection limit of 60-400 mg/dL, as validated with the standard hexokinase enzymatic method for glucose estimation. In conclusion, this proposed mbNIR based SDNN model with PMF is highly accurate and computationally cheaper compared to similar previous works using complex neural network. Some groups proposed using complicated mixed types of sensors to improve noninvasive glucose prediction accuracy; however, the accuracy gain over the complexity and costs of the systems harvested is still in questioned (Geng et al. in Sci Rep 7:12650, 2017). None of previous works report on accuracy enhancement of NIR/NN using PMF. Therefore, the proposed SDNN over PMF/mbNIR is an extremely promising candidate for the non-invasive real-time blood glucose monitoring with less complexity and pain-free.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Blood Glucose Self-Monitoring/methods , Blood Glucose/analysis , Neural Networks, Computer , Spectroscopy, Near-Infrared/instrumentation , Spectroscopy, Near-Infrared/methods , Humans
5.
Sci Rep ; 6: 23733, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-27020705

ABSTRACT

In this work, a novel platform for surface-enhanced Raman spectroscopy (SERS)-based chemical sensors utilizing three-dimensional microporous graphene foam (GF) decorated with silver nanoparticles (AgNPs) is developed and applied for methylene blue (MB) detection. The results demonstrate that silver nanoparticles significantly enhance cascaded amplification of SERS effect on multilayer graphene foam (GF). The enhancement factor of AgNPs/GF sensor is found to be four orders of magnitude larger than that of AgNPs/Si substrate. In addition, the sensitivity of the sensor could be tuned by controlling the size of silver nanoparticles. The highest SERS enhancement factor of ∼ 5 × 10(4) is achieved at the optimal nanoparticle size of 50 nm. Moreover, the sensor is capable of detecting MB over broad concentration ranges from 1 nM to 100 µM. Therefore, AgNPs/GF is a highly promising SERS substrate for detection of chemical substances with ultra-low concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...