Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 75(8): 2330-2350, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38159048

ABSTRACT

During late- and post-ripening stages, grape berry undergoes profound biochemical and physiological changes whose molecular control is poorly understood. Here, we report the role of NAC61, a grapevine NAC transcription factor, in regulating different processes involved in berry ripening progression. NAC61 is highly expressed during post-harvest berry dehydration and its expression pattern is closely related to sugar concentration. The ectopic expression of NAC61 in Nicotiana benthamiana leaves resulted in low stomatal conductance, high leaf temperature, tissue collapse and a higher relative water content. Transcriptome analysis of grapevine leaves transiently overexpressing NAC61 and DNA affinity purification and sequencing analyses allowed us to narrow down a list of NAC61-regulated genes. Direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, the Botrytis cinerea susceptibility gene WRKY52, and NAC61 itself was validated. We also demonstrate that NAC61 interacts with NAC60, a proposed master regulator of grapevine organ maturation, in the activation of MYB14 and NAC61 expression. Overall, our findings establish NAC61 as a key player in a regulatory network that governs stilbenoid metabolism and osmotic, oxidative, and biotic stress responses that are the hallmark of late- and post-ripening grape stages.


Subject(s)
Stilbenes , Vitis , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling , Stress, Physiological , Stilbenes/metabolism , Vitis/metabolism , Oxidative Stress , Fruit/metabolism , Gene Expression Regulation, Plant
2.
Microbiol Spectr ; 10(6): e0207322, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36287008

ABSTRACT

Disease resistance in plants depends on a molecular dialogue with microbes that involves many known chemical effectors, but the time course of the interaction and the influence of the environment are largely unknown. The outcome of host-pathogen interactions is thought to reflect the offensive and defensive capabilities of both players. When plants interact with Pseudomonas syringae, several well-characterized virulence factors contribute to early bacterial pathogenicity, including the type III secretion system (T3SS), which must be activated by signals from the plant and environment to allow the secretion of virulence effectors. The manner in which these signals regulate T3SS activity is still unclear. Here, we strengthen the paradigm of the plant-pathogen molecular dialogue by addressing overlooked details concerning the timing of interactions, specifically the role of plant signals and temperature on the regulation of bacterial virulence during the first few hours of the interaction. Whole-genome expression profiling after 1 h revealed that the perception of plant signals from kiwifruit or tomato extracts anticipated T3SS expression in P. syringae pv. actinidiae compared to apoplast-like conditions, facilitating more efficient effector transport in planta, as revealed by the induction of a temperature-dependent hypersensitive response in the nonhost plant Arabidopsis thaliana Columbia-0 (Col-0). Our results show that in the arms race between plants and bacteria, the temperature-dependent timing of bacterial virulence versus the induction of plant defenses is probably one of the fundamental parameters governing the outcome of the interaction. IMPORTANCE Plant diseases-their occurrence and severity-result from the impact of three factors: the host, the pathogen, and the environmental conditions, interconnected in the disease triangle. Time was further included as a fourth factor accounting for plant disease, leading to a more realistic three-dimensional disease pyramid to represent the evolution of disease over time. However, this representation still considers time only as a parameter determining when and to what extent a disease will occur, at a scale from days to months. Here, we show that time is a factor regulating the arms race between plants and pathogens, at a scale from minutes to hours, and strictly depends on environmental factors. Thus, besides the arms possessed by pathogens and plants per se, the opportunity and the timing of arms mobilization make the difference in determining the outcome of an interaction and thus the occurrence of plant disease.


Subject(s)
Pseudomonas syringae , Type III Secretion Systems , Pseudomonas syringae/metabolism , Type III Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Temperature , Virulence , Plant Diseases/microbiology
3.
Int J Mol Sci ; 22(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477914

ABSTRACT

Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine (Vitis vinifera L.). Genetic resistance is an effective and sustainable control strategy, but major resistance genes (encoding receptors for specific pathogen effectors) introgressed from wild Vitis species, although effective, may be non-durable because the pathogen can evolve to avoid specific recognition. Previous transcriptomic studies in the resistant species Vitis riparia highlighted the activation of signal transduction components during infection. The transfer of such components to V. vinifera might confer less specific and therefore more durable resistance. Here, we describe the generation of transgenic V. vinifera lines constitutively expressing the V. riparia E3 ubiquitin ligase gene VriATL156. Phenotypic and molecular analysis revealed that the transgenic plants were less susceptible to P. viticola than vector-only controls, confirming the role of this E3 ubiquitin ligase in the innate immune response. Two independent transgenic lines were selected for detailed analysis of the resistance phenotype by RNA-Seq and microscopy, revealing the profound reprogramming of transcription to achieve resistance that operates from the earliest stages of pathogen infection. The introduction of VriATL156 into elite grapevine cultivars could therefore provide an effective and sustainable control measure against downy mildew.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Ubiquitin-Protein Ligases/genetics , Vitis/genetics , Gene Expression Regulation, Plant/genetics , Host-Pathogen Interactions/genetics , Oomycetes/pathogenicity , Plant Diseases/microbiology , Plant Proteins/genetics , Transcriptome/genetics
4.
Mol Plant Microbe Interact ; 34(4): 376-396, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33356409

ABSTRACT

Pseudomonas syringae pv. actinidiae is a phytopathogen that causes devastating bacterial canker in kiwifruit. Among five biovars defined by genetic, biochemical, and virulence traits, P. syringae pv. actinidiae biovar 3 (Psa3) is the most aggressive and is responsible for the most recent reported outbreaks; however, the molecular basis of its heightened virulence is unclear. Therefore, we designed the first P. syringae multistrain whole-genome microarray, encompassing biovars Psa1, Psa2, and Psa3 and the well-established model P. syringae pv. tomato, and analyzed early bacterial responses to an apoplast-like minimal medium. Transcriptomic profiling revealed i) the strong activation in Psa3 of all hypersensitive reaction and pathogenicity (hrp) and hrp conserved (hrc) cluster genes, encoding components of the type III secretion system required for bacterial pathogenicity and involved in responses to environmental signals; ii) potential repression of the hrp/hrc cluster in Psa2; and iii) activation of flagellum-dependent cell motility and chemotaxis genes in Psa1. The detailed investigation of three gene families encoding upstream regulatory proteins (histidine kinases, their cognate response regulators, and proteins with diguanylate cyclase or phosphodiesterase domains) indicated that cyclic di-GMP may be a key regulator of virulence in P. syringae pv. actinidiae biovars. The gene expression data were supported by the quantification of biofilm formation. Our findings suggest that diverse early responses to the host apoplast, even among bacteria belonging to the same pathovar, can lead to different virulence strategies and may explain the differing outcomes of infections. Based on our detailed structural analysis of hrp operons, we also propose a revision of hrp cluster organization and operon regulation in P. syringae.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Actinidia , Pseudomonas syringae , Bacterial Proteins/genetics , Operon , Plant Diseases , Pseudomonas syringae/genetics , Virulence
5.
Plant Physiol Biochem ; 129: 221-237, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29908490

ABSTRACT

Calcium (Ca2+) is an ubiquitous key second messenger in plants, where it modulates many developmental and adaptive processes in response to various stimuli. Several proteins containing Ca2+ binding domain have been identified in plants, including calmodulin (CaM) and calmodulin-like (CML) proteins, which play critical roles in translating Ca2+ signals into proper cellular responses. In this work, a genome-wide analysis conducted in Vitis vinifera identified three CaM- and 62 CML-encoding genes. We assigned gene family nomenclature, analyzed gene structure, chromosomal location and gene duplication, as well as protein motif organization. The phylogenetic clustering revealed a total of eight subgroups, including one unique clade of VviCaMs distinct from VviCMLs. VviCaMs were found to contain four EF-hand motifs whereas VviCML proteins have one to five. Most of grapevine CML genes were intronless, while VviCaMs were intron rich. All the genes were well spread among the 19 grapevine chromosomes and displayed a high level of duplication. The expression profiling of VviCaM/VviCML genes revealed a broad expression pattern across all grape organs and tissues at various developmental stages, and a significant modulation in biotic stress-related responses. Our results highlight the complexity of CaM/CML protein family also in grapevine, supporting the versatile role of its different members in modulating cellular responses to various stimuli, in particular to biotic stresses. This work lays the foundation for further functional and structural studies on specific grapevine CaMs/CMLs in order to better understand the role of Ca2+-binding proteins in grapevine and to explore their potential for further biotechnological applications.


Subject(s)
Calmodulin/genetics , Genes, Plant/genetics , Vitis/genetics , Calmodulin/physiology , Chromosomes, Plant/genetics , Gene Duplication/genetics , Genes, Plant/physiology , Genome, Plant/genetics , Peronospora , Phylogeny , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/physiology , Real-Time Polymerase Chain Reaction , Sequence Alignment , Stress, Physiological , Transcriptome , Vitis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...