Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Stem Cells Transl Med ; 13(9): 859-872, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38920310

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which multiple organs are damaged by the immune system. Although standard treatment options such as hydroxychloroquine (HCQ), glucocorticoids (GCs), and other immunosuppressive or immune-modulating agents can help to manage symptoms, they do not offer a cure. Hence, there is an urgent need for the development of novel drugs and therapies. In recent decades, cell therapies have been used for the treatment of SLE with encouraging results. Hematopoietic stem cell transplantation, mesenchymal stem cells, regulatory T (Treg) cell, natural killer cells, and chimeric antigen receptor T (CAR T) cells are advanced cell therapies which have been developed and evaluated in clinical trials in humans. In clinical application, each of these approaches has shown advantages and disadvantages. In addition, further studies are necessary to conclusively establish the safety and efficacy of these therapies. This review provides a summary of recent clinical trials investigating cell therapies for SLE treatment, along with a discussion on the potential of other cell-based therapies. The factors influencing the selection of common cell therapies for individual patients are also highlighted.


Subject(s)
Cell- and Tissue-Based Therapy , Lupus Erythematosus, Systemic , Humans , Lupus Erythematosus, Systemic/therapy , Lupus Erythematosus, Systemic/immunology , Cell- and Tissue-Based Therapy/methods , Cell- and Tissue-Based Therapy/trends , Mesenchymal Stem Cell Transplantation/methods , Hematopoietic Stem Cell Transplantation/methods , T-Lymphocytes, Regulatory/immunology , Animals , Killer Cells, Natural/immunology
2.
Nucleic Acids Res ; 51(10): 4845-4866, 2023 06 09.
Article in English | MEDLINE | ID: mdl-36929452

ABSTRACT

The action of cis-regulatory elements with either activation or repression functions underpins the precise regulation of gene expression during normal development and cell differentiation. Gene activation by the combined activities of promoters and distal enhancers has been extensively studied in normal and pathological contexts. In sharp contrast, gene repression by cis-acting silencers, defined as genetic elements that negatively regulate gene transcription in a position-independent fashion, is less well understood. Here, we repurpose the STARR-seq approach as a novel high-throughput reporter strategy to quantitatively assess silencer activity in mammals. We assessed silencer activity from DNase hypersensitive I sites in a mouse T cell line. Identified silencers were associated with either repressive or active chromatin marks and enriched for binding motifs of known transcriptional repressors. CRISPR-mediated genomic deletions validated the repressive function of distinct silencers involved in the repression of non-T cell genes and genes regulated during T cell differentiation. Finally, we unravel an association of silencer activity with short tandem repeats, highlighting the role of repetitive elements in silencer activity. Our results provide a general strategy for genome-wide identification and characterization of silencer elements.


Subject(s)
Silencer Elements, Transcriptional , T-Lymphocytes , Animals , Mice , Silencer Elements, Transcriptional/genetics , T-Lymphocytes/metabolism , Transcription Factors/metabolism , Regulatory Sequences, Nucleic Acid , Microsatellite Repeats , Mammals/genetics
4.
J Gerontol A Biol Sci Med Sci ; 77(7): 1287-1291, 2022 07 05.
Article in English | MEDLINE | ID: mdl-34718548

ABSTRACT

Frailty, a specific condition of increased vulnerability and reduced general health associated with aging in older people, is an emerging problem worldwide with major implications for clinical practice and public health. Recent preclinical and clinical studies have supported the safety of mesenchymal stem/stromal cells (MSCs) in the treatment of frailty. Comprehensive study is needed to assess the interrelationship between the condition of frailty and the effects of MSC-based therapy. This randomized controlled phase I/II trial aims to investigate the safety and potential therapeutic efficacy of the allogeneic administration of umbilical cord-derived MSCs (UC-MSCs) in combination with the standard treatment for frailty in Vietnam. Moreover, this study describes the rationales, study designs, methodologies, and analytical strategies currently employed in stem cell research and clinical studies. The primary outcome measures will include the incidences of prespecified administration-associated adverse events and serious adverse events. The potential efficacy will be evaluated based on improvements in frailty conditions (including those determined through a physical examination, patient-reported outcomes, quality of life, immune markers of frailty, metabolism analysis, and cytokine markers from patient plasma). This clinical trial and stem cell analysis associated with patient sampling at different time points aim to identify and characterize the potential effects of UC-MSCs on improving frailty based on the stem cell quality, cytokine/growth factor secretion profiles of UC-MSCs, cellular senescence, and metabolic analysis of patient CD3+ cells providing fundamental knowledge for designing and implementing research strategies in future studies. Clinical Trials Registration Number: NCT04919135.


Subject(s)
Frailty , Mesenchymal Stem Cell Transplantation , Aged , Biomarkers , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Cytokines , Frailty/therapy , Humans , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells , Quality of Life , Randomized Controlled Trials as Topic , Research Design
5.
Nat Commun ; 12(1): 6660, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795220

ABSTRACT

Gene expression is controlled by the involvement of gene-proximal (promoters) and distal (enhancers) regulatory elements. Our previous results demonstrated that a subset of gene promoters, termed Epromoters, work as bona fide enhancers and regulate distal gene expression. Here, we hypothesized that Epromoters play a key role in the coordination of rapid gene induction during the inflammatory response. Using a high-throughput reporter assay we explored the function of Epromoters in response to type I interferon. We find that clusters of IFNa-induced genes are frequently associated with Epromoters and that these regulatory elements preferentially recruit the STAT1/2 and IRF transcription factors and distally regulate the activation of interferon-response genes. Consistently, we identified and validated the involvement of Epromoter-containing clusters in the regulation of LPS-stimulated macrophages. Our findings suggest that Epromoters function as a local hub recruiting the key TFs required for coordinated regulation of gene clusters during the inflammatory response.


Subject(s)
Enhancer Elements, Genetic/physiology , Inflammation/genetics , Interferon Regulatory Factors/metabolism , Promoter Regions, Genetic/physiology , Animals , Enhancer Elements, Genetic/drug effects , Gene Expression Regulation , HeLa Cells , Humans , Inflammation/metabolism , Interferon Type I/metabolism , Interferon-alpha/pharmacology , K562 Cells , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice , Multigene Family/drug effects , Multigene Family/genetics , Promoter Regions, Genetic/drug effects , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism
6.
Cell Rep ; 32(7): 108048, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32814051

ABSTRACT

During thymic development and upon peripheral activation, T cells undergo extensive phenotypic and functional changes coordinated by lineage-specific developmental programs. To characterize the regulatory landscape controlling T cell identity, we perform a wide epigenomic and transcriptional analysis of mouse thymocytes and naive CD4 differentiated T helper cells. Our investigations reveal a dynamic putative enhancer landscape, and we could validate many of the enhancers using the high-throughput CapStarr sequencing (CapStarr-seq) approach. We find that genes using multiple promoters display increased enhancer usage, suggesting that apparent "enhancer redundancy" might relate to isoform selection. Furthermore, we can show that two Runx3 promoters display long-range interactions with specific enhancers. Finally, our analyses suggest a novel function for the PRC2 complex in the control of alternative promoter usage. Altogether, our study has allowed for the mapping of an exhaustive set of active enhancers and provides new insights into their function and that of PRC2 in controlling promoter choice during T cell differentiation.


Subject(s)
Polycomb-Group Proteins/genetics , T-Lymphocytes/metabolism , Animals , Cell Differentiation , Male , Mice
7.
PLoS One ; 15(5): e0233191, 2020.
Article in English | MEDLINE | ID: mdl-32453736

ABSTRACT

The Ikzf1 locus encodes the lymphoid specific transcription factor Ikaros, which plays an essential role in both T and B cell differentiation, while deregulation or mutation of IKZF1/Ikzf1 is involved in leukemia. Tissue-specific and cell identity genes are usually associated with clusters of enhancers, also called super-enhancers, which are believed to ensure proper regulation of gene expression throughout cell development and differentiation. Several potential regulatory regions have been identified in close proximity of Ikzf1, however, the full extent of the regulatory landscape of the Ikzf1 locus is not yet established. In this study, we combined epigenomics and transcription factor binding along with high-throughput enhancer assay and 4C-seq to prioritize an enhancer element located 120 kb upstream of the Ikzf1 gene. We found that deletion of the E120 enhancer resulted in a significant reduction of Ikzf1 mRNA. However, the epigenetic landscape and 3D topology of the locus were only slightly affected, highlighting the complexity of the regulatory landscape regulating the Ikzf1 locus.


Subject(s)
Enhancer Elements, Genetic/physiology , Gene Expression Regulation/physiology , Genetic Loci/physiology , Ikaros Transcription Factor/biosynthesis , Animals , Cell Line , Epigenomics , Genes, Reporter , Ikaros Transcription Factor/genetics , Mice , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
8.
Hum Mutat ; 40(10): 1664-1675, 2019 10.
Article in English | MEDLINE | ID: mdl-31180159

ABSTRACT

Large scale human genome projects have created tremendous human genome databases for some well-studied populations. Vietnam has about 95 million people (the 14th largest country by population in the world) of which more than 86% are Kinh people. To date, genetic studies for Vietnamese people mostly rely on genetic information from other populations. Building a Vietnamese human genetic variation database is a must for properly interpreting Vietnamese genetic variants. To this end, we sequenced 105 whole genomes and 200 whole exomes of 305 unrelated Kinh Vietnamese (KHV) people. We also included 101 other previously published KHV genomes to build a Vietnamese human genetic variation database of 406 KHV people. The KHV database contains 24.81 million variants (22.47 million single nucleotide polymorphisms (SNPs) and 2.34 million indels) of which 0.71 million variants are novel. It includes more than 99.3% of variants with a frequency of >1% in the KHV population. Noticeably, the KHV database revealed 107 variants reported in the human genome mutation database as pathological mutations with a frequency above 1% in the KHV population. The KHV database (available at https://genomes.vn) would be beneficial for genetic studies and medical applications not only for the Vietnamese population but also for other closely related populations.


Subject(s)
Asian People/genetics , Databases, Genetic , Genetic Variation , Genome, Human , Computational Biology/methods , Genetics, Population , Humans , Molecular Sequence Annotation , Phylogeny , Phylogeography , Polymorphism, Single Nucleotide , Reproducibility of Results , Sequence Analysis, DNA , Vietnam , Exome Sequencing , Whole Genome Sequencing
9.
Sci Rep ; 9(1): 4707, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30886319

ABSTRACT

Normal T-cell differentiation requires a complex regulatory network which supports a series of maturation steps, including lineage commitment, T-cell receptor (TCR) gene rearrangement, and thymic positive and negative selection. However, the underlying molecular mechanisms are difficult to assess due to limited T-cell models. Here we explore the use of the pro-T-cell line P5424 to study early T-cell differentiation. Stimulation of P5424 cells by the calcium ionophore ionomycin together with PMA resulted in gene regulation of T-cell differentiation and activation markers, partially mimicking the CD4-CD8- double negative (DN) to double positive (DP) transition and some aspects of subsequent T-cell maturation and activation. Global analysis of gene expression, along with kinetic experiments, revealed a significant association between the dynamic expression of coding genes and neighbor lncRNAs including many newly-discovered transcripts, thus suggesting potential co-regulation. CRISPR/Cas9-mediated genetic deletion of Robnr, an inducible lncRNA located downstream of the anti-apoptotic gene Bcl2, demonstrated a critical role of the Robnr locus in the induction of Bcl2. Thus, the pro-T-cell line P5424 is a powerful model system to characterize regulatory networks involved in early T-cell differentiation and maturation.


Subject(s)
Cell Differentiation/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Long Noncoding/metabolism , T-Lymphocytes/physiology , Animals , Apoptosis/genetics , CRISPR-Cas Systems/genetics , Cell Differentiation/drug effects , Cell Line, Tumor , Gene Knockdown Techniques , Genetic Loci , Ionomycin/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Mice , RNA, Long Noncoding/genetics , Tetradecanoylphorbol Acetate/analogs & derivatives , Tetradecanoylphorbol Acetate/pharmacology
10.
Transcription ; 9(5): 307-314, 2018.
Article in English | MEDLINE | ID: mdl-29889606

ABSTRACT

Promoters with enhancer activity have been described recently. In this point of view, we will discuss current findings highlighting the commonality of this type of regulatory elements, their genetic and epigenetic characteristics, their potential biological roles in the regulation of gene expression and the underlining molecular mechanisms. ABBREVIATIONS: TSS: transcription start site; IFN: interferon; STARR-seq: Self-Transcribing Active Regulatory Region sequencing; MPRA: Massively Parallel Reporter Assay; ChIP: chromatin immunoprecipitation; CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; lncRNA: long non-coding RNA.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Promoter Regions, Genetic/genetics , Transcription, Genetic/genetics , Animals , CRISPR-Cas Systems , Drosophila/genetics , Drosophila/physiology , Gene Editing , HeLa Cells , Humans , Indoles/pharmacology , Interferons/metabolism , K562 Cells , Mice , Mice, Knockout , Pyrimidines/pharmacology , Thiazoles/pharmacology , Thiophenes/pharmacology
11.
J Mol Biol ; 430(15): 2219-2230, 2018 07 20.
Article in English | MEDLINE | ID: mdl-29758261

ABSTRACT

Recently, many long non-coding RNAs (lncRNAs) have been identified and their biological function has been characterized; however, our understanding of their underlying molecular mechanisms related to disease is still limited. To overcome the limitation in experimentally identifying disease-lncRNA associations, computational methods have been proposed as a powerful tool to predict such associations. These methods are usually based on the similarities between diseases or lncRNAs since it was reported that similar diseases are associated with functionally similar lncRNAs. Therefore, prediction performance is highly dependent on how well the similarities can be captured. Previous studies have calculated the similarity between two diseases by mapping exactly each disease to a single Disease Ontology (DO) term, and then use a semantic similarity measure to calculate the similarity between them. However, the problem of this approach is that a disease can be described by more than one DO terms. Until now, there is no annotation database of DO terms for diseases except for genes. In contrast, Human Phenotype Ontology (HPO) is designed to fully annotate human disease phenotypes. Therefore, in this study, we constructed disease similarity networks/matrices using HPO instead of DO. Then, we used these networks/matrices as inputs of two representative machine learning-based and network-based ranking algorithms, that is, regularized least square and heterogeneous graph-based inference, respectively. The results showed that the prediction performance of the two algorithms on HPO-based is better than that on DO-based networks/matrices. In addition, our method can predict 11 novel cancer-associated lncRNAs, which are supported by literature evidence.


Subject(s)
Disease/genetics , Gene Ontology , Molecular Sequence Annotation , RNA, Long Noncoding/genetics , Algorithms , Computational Biology/methods , Databases, Genetic , Disease/classification , Gene Regulatory Networks , Humans , Neoplasms/genetics , Phenotype , Reproducibility of Results
12.
F1000Res ; 6: 939, 2017.
Article in English | MEDLINE | ID: mdl-28690838

ABSTRACT

The regulation of gene transcription in higher eukaryotes is accomplished through the involvement of transcription start site (TSS)-proximal (promoters) and -distal (enhancers) regulatory elements. It is now well acknowledged that enhancer elements play an essential role during development and cell differentiation, while genetic alterations in these elements are a major cause of human disease. Many strategies have been developed to identify and characterize enhancers. Here, we discuss recent advances in high-throughput approaches to assess enhancer activity, from the well-established massively parallel reporter assays to the recent clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based technologies. We highlight how these approaches contribute toward a better understanding of enhancer function, eventually leading to the discovery of new types of regulatory sequences, and how the alteration of enhancers can affect transcriptional regulation.

13.
Nat Genet ; 49(7): 1073-1081, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28581502

ABSTRACT

Gene expression in mammals is precisely regulated by the combination of promoters and gene-distal regulatory regions, known as enhancers. Several studies have suggested that some promoters might have enhancer functions. However, the extent of this type of promoters and whether they actually function to regulate the expression of distal genes have remained elusive. Here, by exploiting a high-throughput enhancer reporter assay, we unravel a set of mammalian promoters displaying enhancer activity. These promoters have distinct genomic and epigenomic features and frequently interact with other gene promoters. Extensive CRISPR-Cas9 genomic manipulation demonstrated the involvement of these promoters in the cis regulation of expression of distal genes in their natural loci. Our results have important implications for the understanding of complex gene regulation in normal development and disease.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Promoter Regions, Genetic/genetics , 3T3 Cells , Animals , CRISPR-Cas Systems , Epigenomics , Gene Ontology , HeLa Cells , Humans , Interferon-alpha/pharmacology , K562 Cells , Mammals/genetics , Mice
14.
Nat Commun ; 6: 6905, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25872643

ABSTRACT

Cell-type specific regulation of gene expression requires the activation of promoters by distal genomic elements defined as enhancers. The identification and the characterization of enhancers are challenging in mammals due to their genome complexity. Here we develop CapStarr-Seq, a novel high-throughput strategy to quantitatively assess enhancer activity in mammals. This approach couples capture of regions of interest to previously developed Starr-seq technique. Extensive assessment of CapStarr-seq demonstrates accurate quantification of enhancer activity. Furthermore, we find that enhancer strength is associated with binding complexity of tissue-specific transcription factors and super-enhancers, while additive enhancer activity isolates key genes involved in cell identity and function. The CapStarr-Seq thus provides a fast and cost-effective approach to assess the activity of potential enhancers for a given cell type and will be helpful in decrypting transcription regulation mechanisms.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Gene Expression/genetics , High-Throughput Nucleotide Sequencing/methods , Transcription Factors/genetics , Animals , Chromatin Immunoprecipitation , Male , Mice , NIH 3T3 Cells , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA/methods
15.
Transplantation ; 98(10): 1040-7, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25208321

ABSTRACT

BACKGROUND: Periosteum-derived progenitor cells (PDPCs) isolated from the adult periosteum can differentiate into several specific cell types. In this study, we examined the characteristics of human PDPCs and insulin-producing cells (IPCs) differentiated from PDPCs and their ability to ameliorate hyperglycemia when transplanted into streptozotocin-induced nonobese diabetic-severe combined immunodeficiency diabetic mice. METHODS: Periosteum-derived progenitor cells were isolated from patients, expanded in culture, and subjected to a three-step differentiation protocol to produce IPCs. The expression of immunogenic, pluripotent, and pancreatic markers was examined, and glucose-stimulated insulin release in vitro was also assessed. Insulin-producing cells that differentiated from PDPCs were transplanted under the kidney capsule of streptozotocin-induced diabetic mice, and glucose levels and glucose tolerance were measured. RESULTS: We found that PDPCs expressed the mesenchymal stem cell markers CD73, CD90, and CD105 and the pluripotent markers, octamer-binding transcription factor 4 and Nanog, but not sex-determining region Y-box 2 or Rex1. Periosteum-derived progenitor cells expressed human leukocyte antigen-ABC but did not express human leukocyte antigen-DR or the costimulatory molecules CD80 and CD86. Differentiated IPCs expressed pancreatic hormones (insulin, glucagon, somatostatin, and glucose transporter 2), hormone processing, and secretion molecules (prohormone convertase-1 and convertase-2, Kir6.2), and pancreatic transcription factors (neurogenin 3, pancreatic and duodenal homeobox 1, sex-determining region Y-box 17). When IPCs were stimulated with glucose in vitro, insulin secretion was elevated. Transplantation of IPCs under the kidney capsules of diabetic mice improved hyperglycemia and glucose tolerance. Human insulin was detected in the serum and kidney sections of mice transplanted with IPCs differentiated from PDPCs. CONCLUSION: These results suggest that IPCs differentiated from PDPCs might be an alternative source of ß cells for treating diabetes.


Subject(s)
Hyperglycemia/therapy , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Insulin/biosynthesis , Islets of Langerhans Transplantation/methods , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Blood Glucose/metabolism , Cell Differentiation , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/therapy , Female , Heterografts , Humans , Hyperglycemia/blood , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Periosteum/cytology
16.
Med Sci (Paris) ; 30(8-9): 790-6, 2014.
Article in French | MEDLINE | ID: mdl-25174757

ABSTRACT

The transcription of essentially the entire eukaryotic genome generates a myriad of non-coding RNA species that show complex overlapping patterns of expression and regulation. In the last decade, several large scale genomic analyses have shed light on the widespread existence of long non-coding RNAs (lncRNAs) in mammals. Although the function of most lncRNAs remains unknown, many of them have been suggested to play important roles in the regulation of gene expression during normal development and diseases, including cancers. Indeed, functional studies have demonstrated that lncRNAs participate in various biological processes, including reprogramming of pluripotent stem cells, oncogenic progression and cell cycle regulation. In this review, we summarize recent findings about the biology of lncRNAs and their functions in normal and pathological development in mammals.


Subject(s)
Disease/genetics , Growth and Development/genetics , RNA, Long Noncoding/physiology , Animals , Biomarkers , Genetic Therapy/methods , High-Throughput Nucleotide Sequencing , Humans
17.
Stem Cells Dev ; 23(1): 24-33, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23998797

ABSTRACT

Potential therapeutic use of human adipose tissue-derived stem cells (hADSCs) requires the production of large cell numbers by in vitro expansion. However, long-term in vitro culture is associated with reduced stem cell characteristics and differentiation capability. We investigated the proliferation rate and expression of p16(INK4a) mRNA, surface stem cell markers, and stem cell transcription factors. The proliferation rate decreased significantly as passages increased, and the expression of p16(INK4a) mRNA significantly increased. FACS analysis of CD73, CD90, and CD105 expression showed no significant difference among examined passages; however, the mRNA expression levels of pluripotent markers, Oct4 and Nanog, were significantly decreased at higher passages. At passages 12 and 20, there was decreased differentiation capability into insulin-producing cells, evidenced by significantly decreased expression of insulin and related ß cell markers. Adipogenic and osteogenic differentiation was also decreased at higher passages. We then analyzed the transcriptional expression profiles of 48 nuclear receptors at four different passages. We found that the expression of peroxisome proliferator-activated receptor γ (PPARγ) and thyroid hormone receptor TRß was significantly decreased at higher passages. Treatment with PPARγ activators or overexpression of PPARγ in hADSCs at passage 20 could recover Oct4 expression levels and increase Oct4 promoter activity. PPARγ inactivation by GW9662 inhibited the troglitazone-induced Oct4 mRNA expression. Furthermore, PPARγ overexpression in hADSC at passage 20 improved the differentiation potential to insulin-producing cells. In conclusion, we demonstrated that hADSCs undergo characteristic changes and reduction of differentiation capability during expanded culture in vitro, and revealed the role of PPARγ as one potential factor in the regulation of Oct4 expression during in vitro aging of hADSCs.


Subject(s)
Adipose Tissue/cytology , Octamer Transcription Factor-3/biosynthesis , PPAR gamma/genetics , Stem Cells/cytology , Aging/physiology , Anilides/pharmacology , Biomarkers , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Cell- and Tissue-Based Therapy , Cells, Cultured , Chromans/pharmacology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Homeodomain Proteins/biosynthesis , Humans , Insulin/biosynthesis , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/cytology , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , PPAR gamma/antagonists & inhibitors , PPAR gamma/biosynthesis , Promoter Regions, Genetic , RNA, Messenger/biosynthesis , Receptors, Cytoplasmic and Nuclear/biosynthesis , Thiazolidinediones/pharmacology , Thyroid Hormone Receptors beta/biosynthesis , Troglitazone
18.
J Agric Food Chem ; 53(19): 7630-6, 2005 Sep 21.
Article in English | MEDLINE | ID: mdl-16159196

ABSTRACT

Commercial grapefruit seed extracts (GSE) were extracted with chloroform. The solvent was evaporated, and the resulting solid was subsequently analyzed by high-performance liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI/MS), tandem mass spectrometry (ESI/MS/MS), and elemental analysis (by proton-induced X-ray emission analysis). Three major constituents were observed by HPLC and were identified as benzyldimethyldodecylammonium chloride, benzyldimethyltetradecylammonium chloride, and benzyldimethylhexadecylammonium chloride. This mixture of homologues is commonly known as benzalkonium chloride, a widely used synthetic antimicrobial ingredient used in cleaning and disinfection agents.


Subject(s)
Benzalkonium Compounds/analysis , Citrus paradisi/chemistry , Seeds/chemistry , Chloroform , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Mass Spectrometry , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization , Spectrometry, X-Ray Emission
19.
J Agric Food Chem ; 53(12): 4932-7, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15941338

ABSTRACT

A major anthocyanin was isolated from the acidified methanolic extract of Beluga black lentils by XAD7 column chromatography and preparative high-performance liquid chromatography. By means of electrospray ionization mass spectrometry and one- and two-dimensional nuclear magnetic resonance spectroscopy, its structure was determined to be delphinidin 3-O-(2-O-beta-D-glucopyranosyl-alpha-l-arabinopyranoside).


Subject(s)
Anthocyanins/analysis , Lens Plant/chemistry , Seeds/chemistry , Anthocyanins/chemistry , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Molecular Structure , Spectrometry, Mass, Electrospray Ionization
20.
J Agric Food Chem ; 51(2): 496-501, 2003 Jan 15.
Article in English | MEDLINE | ID: mdl-12517116

ABSTRACT

Almond hulls (Nonpareil variety) were extracted with methanol and analyzed by reversed phase HPLC with diode array detection. The extract contained 5-O-caffeoylquinic acid (chlorogenic acid), 4-O-caffeoylquinic acid (cryptochlorogenic acid), and 3-O-caffeoylquinic acid (neochlorogenic acid) in the ratio 79.5:14.8:5.7. The chlorogenic acid concentration of almond hulls was 42.52 +/- 4.50 mg/100 g of fresh weight (n = 4; moisture content = 11.39%). Extracts were tested for their ability to inhibit the oxidation of methyl linoleate at 40 degrees C. At an equivalent concentration (10 microg/1 g of methyl linoleate) almond hull extracts had higher antioxidant activity than alpha-tocopherol. At higher concentrations (50 microg/1 g of methyl linoleate) almond hull extracts showed increased antioxidant activity that was similar to chlorogenic acid and morin [2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one] standards (at the same concentrations). These data indicate that almond hulls are a potential source of these dietary antioxidants. The sterols (3beta,22E)-stigmasta-5,22-dien-3-ol (stigmasterol) and (3beta)-stigmast-5-en-3-ol (beta-sitosterol) (18.9 mg and 16.0 mg/100 g of almond hull, respectively) were identified by GC-MS of the silylated almond hull extract.


Subject(s)
Antioxidants/analysis , Prunus/chemistry , Seeds/chemistry , Chlorogenic Acid/analysis , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Hydroxybenzoates/analysis , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL