Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(9)2022 May 08.
Article in English | MEDLINE | ID: mdl-35591703

ABSTRACT

This paper presents the development of a numerical model for predicting and studying the effects of tool nose geometries and its interactions with cutting parameters during orthogonal cutting of AISI 1045 steel. The process performance characteristics studied were cutting temperature, effective stress, cutting forces and tool wear. The cutting simulations were done using the commercial DEFORM-2D R V 11.3 software, based on the finite element method (FEM). The cutting tool used had a round nose with various nose radii (0.01-0.9 mm), while the machining parameters tested were the feed rate (0.1-0.3 mm/rev), the cutting speed (100-500 m/min) and the rake angle (-5° to +10°). The interactions between the tool nose radius and the cutting parameters (speed, feed) were found to affect mostly the cutting stress and, slightly, the tool wear rate. These interactions did not much influence the cutting temperature, that was found to be high when the tool nose radius and/or the cutting speed were high. The maximum temperature was found to occur at the middle of the tool-chip contact length and at the interaction of nose radius and flank face of the tool. Except for some fluctuations, there was no significant difference in tool wear rate between small and large nose radius scales.

2.
Biomimetics (Basel) ; 6(4)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34698076

ABSTRACT

This article proposes the integration of structural sizing, topology, and aerodynamic optimization for a morphing variable span of tapered wing (MVSTW) with the aim to minimize its weight. In order to evaluate the feasibility of the morphing wing optimization, this work creates a numerical environment by incorporating simultaneous structural sizing and topology optimization based on its aerodynamic analysis. This novel approach is proposed for an MVSTW. A problem-specific optimization approach to determine the minimum weight structure of the wing components for its fixed and moving segments is firstly presented. The optimization was performed using the OptiStruct solver inside HyperMesh. This investigation seeks to minimize total structure compliance while maximizing stiffness in order to satisfy the structural integrity requirements of the MVSTW. The aerodynamic load distribution along the wingspan at full wingspan extension and maximum speed were considered in the optimization processes. The wing components were optimized for size and topology, and all of them were built from aluminum alloy 2024-T3. The optimization results show that weight savings of up to 51.2% and 55.7% were obtained for fixed and moving wing segments, respectively. Based on these results, the optimized variable-span morphing wing can perform certain flight missions perfectly without experiencing any mechanical failures.

SELECTION OF CITATIONS
SEARCH DETAIL
...