Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
MAbs ; 12(1): 1829337, 2020.
Article in English | MEDLINE | ID: mdl-33079615

ABSTRACT

Monoclonal antibodies (mAbs) are among the fastest growing and most effective therapies for myriad diseases. Multispecific antibodies are an emerging class of novel therapeutics that can target more than one tumor- or immune-associated modulators per molecule. The combination of different binding affinities and target classes, such as soluble or membrane-bound antigens, within multispecific antibodies confers unique pharmacokinetic (PK) properties. Numerous factors affect an antibody's PK, with affinity to the neonatal Fc receptor (FcRn) a key determinant of half-life. Recent work has demonstrated the potential for humanized FcRn transgenic mice to predict the PK of mAbs in humans. However, such work has not been extended to multispecific antibodies. We engineered mAbs and multispecific antibodies with various Fc modifications to enhance antibody performance. PK analyses in humanized FcRn transgenic mouse (homozygous Tg32 and Tg276) and non-human primate (NHP) models showed that FcRn-binding mutations improved the plasma half-lives of the engineered mAbs and multispecific antibodies, while glycan engineering to eliminate effector function did not affect the PK compared with wild-type controls. Furthermore, results suggest that the homozygous Tg32 mouse model can replace NHP models to differentiate PK of variants during lead optimization, not only for wild-type mAbs but also for Fc-engineered mAbs and multispecific antibodies. This Tg32-mouse model would enable prediction of half-life and linear clearance of mAbs and multispecific antibodies in NHPs to guide the design of further pharmacology/safety studies in this species. The allometric exponent for clearance scaling from Tg32 mice to NHPs was estimated to be 0.91 for all antibodies.


Subject(s)
Antibodies, Monoclonal , Histocompatibility Antigens Class I/immunology , Receptors, Fc/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Histocompatibility Antigens Class I/genetics , Humans , Macaca fascicularis , Mice , Mice, Transgenic , Receptors, Fc/genetics
2.
J Med Chem ; 52(6): 1659-69, 2009 Mar 26.
Article in English | MEDLINE | ID: mdl-19226162

ABSTRACT

The hepatitis C virus (HCV) NS5B polymerase is essential for viral replication and has been a prime target for drug discovery research. Our efforts directed toward the discovery of HCV polymerase inhibitors resulted in the identification of unsymmetrical dialkyl-hydroxynaphthalenoyl-benzothiadiazines 2 and 3. The most active compound displayed activity in genotypes 1a and 1b polymerase and replicon cell culture inhibition assays at subnanomolar and low nanomolar concentrations, respectively. It also displayed an excellent pharmacokinetic profile in rats, with a plasma elimination half-life after intravenous dosing of 4.5 h, oral bioavailability of 77%, and a peak liver concentration of 21.8 microg/mL.


Subject(s)
Benzothiadiazines/chemical synthesis , Benzothiadiazines/pharmacology , DNA-Directed RNA Polymerases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Hepacivirus/enzymology , Animals , Benzothiadiazines/pharmacokinetics , Biological Availability , Enzyme Inhibitors/pharmacokinetics , Half-Life , Humans , Magnetic Resonance Spectroscopy , Rats , Spectrometry, Mass, Electrospray Ionization
3.
J Med Chem ; 49(25): 7450-65, 2006 Dec 14.
Article in English | MEDLINE | ID: mdl-17149874

ABSTRACT

The goal of this study was to identify a structurally distinct D(4)-selective agonist with superior oral bioavailability to our first-generation clinical candidate 1a (ABT-724) for the potential treatment of erectile dysfunction. Arylpiperazines such as (heteroarylmethyl)piperazine 1a, benzamide 2, and acetamides such as 3a,b exhibit poor oral bioavailability. Structure-activity relationship (SAR) studies with the arylpiperidine template provided potent partial agonists such as 4d and 5k that demonstrated no improvement in oral bioavailability. Further optimization with the (N-oxy-2-pyridinyl)piperidine template led to the discovery of compound 6b (ABT-670), which exhibited excellent oral bioavailability in rat, dog, and monkey (68%, 85%, and 91%, respectively) with comparable efficacy, safety, and tolerability to 1a. The N-oxy-2-pyridinyl moiety not only provided the structural motif required for agonist function but also reduced metabolism rates. The SAR study leading to the discovery of 6b is described herein.


Subject(s)
Benzamides/chemical synthesis , Cyclic N-Oxides/chemical synthesis , Erectile Dysfunction/drug therapy , Receptors, Dopamine D4/agonists , Action Potentials , Administration, Oral , Animals , Benzamides/chemistry , Benzamides/pharmacology , Biological Availability , Cell Line , Cyclic N-Oxides/chemistry , Cyclic N-Oxides/pharmacology , Dogs , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/physiology , Haplorhini , Humans , In Vitro Techniques , Male , Patch-Clamp Techniques , Purkinje Fibers/drug effects , Purkinje Fibers/physiology , Rats , Structure-Activity Relationship
4.
FEMS Microbiol Lett ; 244(2): 329-33, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15766786

ABSTRACT

Protozoan movement and feeding regimes in soil biofilms were observed with inverted microscopes and Utermohl plankton counting chambers (4 mm deep). In a new use for these counting chambers, the three-dimensional appearance of a soil pore network can be simulated using long working distance objectives (40x). Protozoa were often associated with soil surfaces and penetrated soil crevices of less than 3 microm in diameter by either distorting their body outlines or with slender pseudopodia of less than 2 microm at the tips. Many ciliates repeatedly collided with soil particles and released attached bacteria into the soil solution for subsequent predation.


Subject(s)
Biofilms/growth & development , Eukaryota/physiology , Soil/parasitology , Animals , Eukaryota/isolation & purification , Eukaryota/ultrastructure , Feeding Behavior , Soil Microbiology
5.
Bioorg Med Chem ; 12(8): 1895-904, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15051058

ABSTRACT

In search of a novel chemotype of K(ATP) channel openers a series of tricyclic dihydropyridopyrazolones and dihydropyridoisoxazolones was synthesized. It was found that cyclopentanone in the left hand portion of the molecule was 4-fold more potent than cyclohexanone. Introduction of gem-dimethyl groups as well as incorporation of oxygen in the cyclohexanone ring in the left hand portion of the molecule increased the potency 10-fold. In the right hand portion of the molecule, the NH-group of the pyrazolone can be effectively substituted by oxygen increasing the activity 5-fold. Incorporation of a methyl group adjacent to the dihydropyridine (DHP) nitrogen not only significantly boosted activity, but also provided an additional benefit of increased metabolic stability. In vitro tests on the tissue from pig bladder strips provided further confirmation of K(ATP) activity of these compounds.


Subject(s)
Membrane Proteins/physiology , Oxazolone/chemistry , Potassium Channels/physiology , Pyrazoles/chemistry , Pyrazolones , Pyridines/chemistry , Animals , Cells, Cultured , Guinea Pigs , Humans , In Vitro Techniques , Membrane Proteins/agonists , Oxazolone/pharmacology , Potassium Channels/agonists , Pyrazoles/pharmacology , Pyridines/pharmacology , Structure-Activity Relationship , Swine
SELECTION OF CITATIONS
SEARCH DETAIL