Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Nature ; 629(8010): 201-210, 2024 May.
Article in English | MEDLINE | ID: mdl-38600376

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of haematological malignancies such as acute lymphoblastic leukaemia, B cell lymphoma and multiple myeloma1-4, but the efficacy of CAR T cell therapy in solid tumours has been limited5. This is owing to a number of factors, including the immunosuppressive tumour microenvironment that gives rise to poorly persisting and metabolically dysfunctional T cells. Analysis of anti-CD19 CAR T cells used clinically has shown that positive treatment outcomes are associated with a more 'stem-like' phenotype and increased mitochondrial mass6-8. We therefore sought to identify transcription factors that could enhance CAR T cell fitness and efficacy against solid tumours. Here we show that overexpression of FOXO1 promotes a stem-like phenotype in CAR T cells derived from either healthy human donors or patients, which correlates with improved mitochondrial fitness, persistence and therapeutic efficacy in vivo. This work thus reveals an engineering approach to genetically enforce a favourable metabolic phenotype that has high translational potential to improve the efficacy of CAR T cells against solid tumours.


Subject(s)
Forkhead Box Protein O1 , Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Stem Cells , T-Lymphocytes , Humans , Mice , Cell Line, Tumor , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Mitochondria/metabolism , Phenotype , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Tumor Microenvironment/immunology , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy
3.
Trends Immunol ; 44(12): 971-985, 2023 12.
Article in English | MEDLINE | ID: mdl-37995659

ABSTRACT

Macrophages represent a key component of the tumor microenvironment (TME) and are largely associated with poor prognosis. Therapeutic targeting of macrophages has historically focused on inhibiting their recruitment or reprogramming their phenotype from a protumor (M2-like) to an antitumor (M1-like) one. Unfortunately, this approach has not provided clinical breakthroughs that have changed practice. Emerging studies utilizing single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics have improved our understanding of the ontogeny, phenotype, and functional plasticity of macrophages. Overlaying the wealth of current information regarding macrophage molecular subtypes and functions has also identified novel therapeutic vulnerabilities that might drive better control of tumor-associated macrophages (TAMs). Here, we discuss the functional profiling of macrophages and provide an update of novel macrophage-targeted therapies in development.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Neoplasms/pathology , Macrophages/pathology , Phenotype , Tumor Microenvironment
4.
Nat Commun ; 14(1): 6990, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914685

ABSTRACT

There is significant clinical interest in targeting adenosine-mediated immunosuppression, with several small molecule inhibitors having been developed for targeting the A2AR receptor. Understanding of the mechanism by which A2AR is regulated has been hindered by difficulty in identifying the cell types that express A2AR due to a lack of robust antibodies for these receptors. To overcome this limitation, here an A2AR eGFP reporter mouse is developed, enabling the expression of A2AR during ongoing anti-tumor immune responses to be assessed. This reveals that A2AR is highly expressed on all tumor-infiltrating lymphocyte subsets including Natural Killer (NK) cells, NKT cells, γδ T cells, conventional CD4+ and CD8+ T lymphocytes and on a MHCIIhiCD86hi subset of type 2 conventional dendritic cells. In response to PD-L1 blockade, the emergence of PD-1+A2AR- cells correlates with successful therapeutic responses, whilst IL-18 is identified as a cytokine that potently upregulates A2AR and synergizes with A2AR deficiency to improve anti-tumor immunity. These studies provide insight into the biology of A2AR in the context of anti-tumor immunity and reveals potential combination immunotherapy approaches.


Subject(s)
Neoplasms , Animals , Mice , Cytokines/metabolism , Immunity , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Neoplasms/genetics , Neoplasms/metabolism , Tumor Microenvironment
5.
Cell Rep ; 42(8): 113014, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37605534

ABSTRACT

CXCL9 expression is a strong predictor of response to immune checkpoint blockade therapy. Accordingly, we sought to develop therapeutic strategies to enhance the expression of CXCL9 and augment antitumor immunity. To perform whole-genome CRISPR-Cas9 screening for regulators of CXCL9 expression, a CXCL9-GFP reporter line is generated using a CRISPR knockin strategy. This approach finds that IRF1 limits CXCL9 expression in both tumor cells and primary myeloid cells through induction of SOCS1, which subsequently limits STAT1 signaling. Thus, we identify a subset of STAT1-dependent genes that do not require IRF1 for their transcription, including CXCL9. Targeting of either IRF1 or SOCS1 potently enhances CXCL9 expression by intratumoral macrophages, which is further enhanced in the context of immune checkpoint blockade therapy. We hence show a non-canonical role for IRF1 in limiting the expression of a subset of STAT1-dependent genes through induction of SOCS1.


Subject(s)
CRISPR-Cas Systems , Immune Checkpoint Inhibitors , Feedback , Suppressor of Cytokine Signaling Proteins/genetics , Signal Transduction
6.
NPJ Breast Cancer ; 9(1): 68, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582853

ABSTRACT

Novel therapeutic strategies that can effectively combine with immunotherapies are needed in the treatment of triple-negative breast cancer (TNBC). We demonstrate that combined PARP and WEE1 inhibition are synergistic in controlling tumour growth in BRCA1/2 wild-type TNBC preclinical models. The PARP inhibitor (PARPi) olaparib combined with the WEE1 inhibitor (WEE1i) adavosertib triggered increases in anti-tumour immune responses, including STING pathway activation. Combinations with a STING agonist resulted in further improved durable tumour regression and significant improvements in survival outcomes in murine tumour models of BRCA1/2 wild-type TNBC. In addition, we have identified baseline tumour-infiltrating lymphocyte (TIL) levels as a potential predictive biomarker of response to PARPi, WEE1i and immunotherapies in BRCA1/2 wild-type TNBC.

7.
J Natl Cancer Inst ; 115(7): 805-814, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37166471

ABSTRACT

BACKGROUND: Programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) inhibitors have poor efficacy in patients with trastuzumab-resistant advanced HER2-positive breast cancer. Tucatinib is a potent, selective anti-HER2 tyrosine kinase inhibitor with proven clinical benefit in the advanced setting in patients with trastuzumab resistance. We investigated if tucatinib can alter the tumor microenvironment and if this could be harnessed for therapeutic efficacy. METHODS: We investigated the antitumor efficacy and contribution of the immune response of tucatinib using 2 immunocompetent, HER2-positive murine breast cancer models (trastuzumab-sensitive H2N113; trastuzumab-resistant Fo5) and the efficacy of tucatinib with trastuzumab and PD-1 or PD-L1 checkpoint inhibitors. RESULTS: In both models, tucatinib statistically significantly inhibited tumor growth and demonstrated dose-dependent efficacy. Ex vivo analysis by flow cytometry of tumor-infiltrating lymphocytes in mice treated with tucatinib showed increased frequency, higher proliferation, and enhanced effector function of CD8+ effector memory T cells. Tucatinib treatment also increased frequency of CD8+PD-1+ and CD8+TIM3+ T cells, CD49+ natural killer cells, monocytes, and major histocompatibility complex II expression on dendritic cells and macrophages and a decrease in myeloid-derived suppressor cells. Gene expression analysis revealed statistically significant enrichment in pathways associated with immune activation, type I and II interferon response, adaptive immune response, and antigen receptor signaling. In vivo, tucatinib and α-PD-L1 or α-PD-1 demonstrated statistically significantly increased efficacy and improved survival of mice compared with tucatinib alone. CONCLUSION: Tucatinib modulates the immune microenvironment favorably, and combination treatment with α-PD-L1 or α-PD-1 demonstrated increased efficacy in preclinical HER2-positive tumor models. These findings provide a rationale for investigation of tucatinib and immune checkpoint inhibition in the clinic.


Subject(s)
B7-H1 Antigen , Breast Neoplasms , Mice , Humans , Animals , Female , Receptor, ErbB-2/metabolism , Programmed Cell Death 1 Receptor , Ligands , Breast Neoplasms/pathology , Trastuzumab/therapeutic use , CD8-Positive T-Lymphocytes , Apoptosis , Tumor Microenvironment
8.
Sci Transl Med ; 15(690): eabk1900, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37018415

ABSTRACT

Patients who receive chimeric antigen receptor (CAR)-T cells that are enriched in memory T cells exhibit better disease control as a result of increased expansion and persistence of the CAR-T cells. Human memory T cells include stem-like CD8+ memory T cell progenitors that can become either functional stem-like T (TSTEM) cells or dysfunctional T progenitor exhausted (TPEX) cells. To that end, we demonstrated that TSTEM cells were less abundant in infused CAR-T cell products in a phase 1 clinical trial testing Lewis Y-CAR-T cells (NCT03851146), and the infused CAR-T cells displayed poor persistence in patients. To address this issue, we developed a production protocol to generate TSTEM-like CAR-T cells enriched for expression of genes in cell replication pathways. Compared with conventional CAR-T cells, TSTEM-like CAR-T cells had enhanced proliferative capacity and increased cytokine secretion after CAR stimulation, including after chronic CAR stimulation in vitro. These responses were dependent on the presence of CD4+ T cells during TSTEM-like CAR-T cell production. Adoptive transfer of TSTEM-like CAR-T cells induced better control of established tumors and resistance to tumor rechallenge in preclinical models. These more favorable outcomes were associated with increased persistence of TSTEM-like CAR-T cells and an increased memory T cell pool. Last, TSTEM-like CAR-T cells and anti-programmed cell death protein 1 (PD-1) treatment eradicated established tumors, and this was associated with increased tumor-infiltrating CD8+CAR+ T cells producing interferon-γ. In conclusion, our CAR-T cell protocol generated TSTEM-like CAR-T cells with enhanced therapeutic efficacy, resulting in increased proliferative capacity and persistence in vivo.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , Immunotherapy, Adoptive/methods , T-Lymphocytes , Cytokines/metabolism , Stem Cells/metabolism , Receptors, Antigen, T-Cell/metabolism
9.
Cancer Cell ; 41(3): 585-601.e8, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36827978

ABSTRACT

CD8+ tumor-infiltrating lymphocytes with a tissue-resident memory T (TRM) cell phenotype are associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, the relative contribution of CD8+ TRM cells to anti-tumor immunity and immune checkpoint blockade efficacy in breast cancer remains unknown. Here, we show that intratumoral CD8+ T cells in murine mammary tumors transcriptionally resemble those from TNBC patients. Phenotypic and transcriptional studies established two intratumoral sub-populations: one more enriched in markers of terminal exhaustion (TEX-like) and the other with a bona fide resident phenotype (TRM-like). Treatment with anti-PD-1 and anti-CTLA-4 therapy resulted in expansion of these intratumoral populations, with the TRM-like subset displaying significantly enhanced cytotoxic capacity. TRM-like CD8+ T cells could also provide local immune protection against tumor rechallenge and a TRM gene signature extracted from tumor-free tissue was significantly associated with improved clinical outcomes in TNBC patients treated with checkpoint inhibitors.


Subject(s)
CD8-Positive T-Lymphocytes , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Immunologic Memory , Phenotype , Prognosis , Lymphocytes, Tumor-Infiltrating
10.
Haematologica ; 108(1): 83-97, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35770527

ABSTRACT

Patients with refractory relapsed multiple myeloma respond to combination treatment with elotuzumab and lenalidomide. The mechanisms underlying this observation are not fully understood. Furthermore, biomarkers predictive of response have not been identified to date. To address these issues, we used a humanized myeloma mouse model and adoptive transfer of human natural killer (NK) cells to show that elotuzumab and lenalidomide treatment controlled myeloma growth, and this was mediated through CD16 on NK cells. In co-culture studies, we showed that peripheral blood mononuclear cells from a subset of patients with refractory relapsed multiple myeloma were effective killers of OPM2 myeloma cells when treated with elotuzumab and lenalidomide, and this was associated with significantly increased expression of CD54 on OPM2 cells. Furthermore, elotuzumab- and lenalidomide-induced OPM2 cell killing and increased OPM2 CD54 expression were dependent on both monocytes and NK cells, and these effects were not mediated by soluble factors alone. At the transcript level, elotuzumab and lenalidomide treatment significantly increased OPM2 myeloma cell expression of genes for trafficking and adhesion molecules, NK cell activation ligands and antigen presentation molecules. In conclusion, our findings suggest that multiple myeloma patients require elotuzumab- and lenalidomide-mediated upregulation of CD54 on autologous myeloma cells, in combination with NK cells and monocytes to mediate an effective anti-tumor response. Furthermore, our data suggest that increased myeloma cell CD54 expression levels could be a powerful predictive biomarker for response to elotuzumab and lenalidomide treatment.


Subject(s)
Multiple Myeloma , Animals , Mice , Humans , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Lenalidomide/metabolism , Multiple Myeloma/metabolism , Monocytes/metabolism , Leukocytes, Mononuclear/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Killer Cells, Natural , Dexamethasone/therapeutic use
11.
Cell Oncol (Dordr) ; 46(3): 589-602, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36567397

ABSTRACT

PURPOSE: Tumor cells thrive by adapting to the signals in their microenvironment. To adapt, cancer cells activate signaling and transcriptional programs and migrate to establish micro-niches, in response to signals from neighboring cells and non-cellular stromal factors. Understanding how the tumor microenvironment evolves during disease progression is crucial to deciphering the mechanisms underlying the functional behavior of cancer cells. METHODS: Multiplex immunohistochemistry, spatial analysis and histological dyes were used to identify and measure immune cell infiltration, cell signal activation and extracellular matrix deposition in low-grade, high-grade astrocytoma and glioblastoma. RESULTS: We show that lower grade astrocytoma tissue is largely devoid of infiltrating immune cells and extracellular matrix proteins, while high-grade astrocytoma exhibits abundant immune cell infiltration, activation, and extensive tissue remodeling. Spatial analysis shows that most T-cells are restricted to perivascular regions, but bone marrow-derived macrophages penetrate deep into neoplastic cell-rich regions. The tumor microenvironment is characterized by heterogeneous PI3K, MAPK and CREB signaling, with specific signaling profiles correlating with distinct pathological hallmarks, including angiogenesis, tumor cell density and regions where neoplastic cells border the extracellular matrix. Our results also show that tissue remodeling is important in regulating the architecture of the tumor microenvironment during tumor progression. CONCLUSION: The tumor microenvironment in malignant astrocytoma, exhibits changes in cell composition, cell signaling activation and extracellular matrix deposition during disease development and that targeting the extracellular matrix, as well as cell signaling activation will be critical to designing personalized therapy.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Humans , Tumor Microenvironment , Glioma/metabolism , Astrocytoma/metabolism , Signal Transduction , Extracellular Matrix/metabolism , Brain Neoplasms/pathology
12.
Sci Rep ; 12(1): 18986, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347875

ABSTRACT

Breast cancer (BCa) incidence increases following aberrant hormone exposure, which has been linked to direct effects on estrogen receptor (ER)+ mammary epithelium. While estrogen exposure during mammary involution has been shown to drive tumour growth via neutrophils, the potential for the ER + immune microenvironment to mediate part (in addition to mammary epithelial cells) of hormonally controlled BCa risk during normal development has not been assessed. We collected mammary tissue, lymph nodes and blood from tumour naïve mice treated with, oophorectomy, estrogen (17ß estradiol) or Fulvestrant. Flow cytometry was used to examine the impact on the frequency of innate and adaptive immune cells. Oophorectomy and fulvestrant decreased the proportion of macrophages, particularly pro-tumour polarized M2 macrophages and neutrophils. Conversely, dendritic cells were increased by these therapies, as were eosinophils. Estrogen increased the proportion of M2 macrophages and to a lesser extent CD4-CD8- double negative and FoxP3+ regulatory T cells but decreased CD8 + T cells and B cells. Excluding eosinophils, these changes were restricted to the mammary tissue. This suggests that inhibiting estrogen action lowers the immune suppressive myeloid cells, increases in antigen presentation and eosinophil-mediated direct or indirect cytotoxic effects. In contrast, estrogen exposure, which drives BCa risk, increases the suppressive myeloid cells and reduces anti-tumour cytotoxic T cells. The impact of hormonal exposure on BCa risk, may in part be linked to its immune modulatory activity.


Subject(s)
Estrogens , Receptors, Estrogen , Mice , Animals , Fulvestrant , Estrogens/pharmacology , Estradiol/pharmacology , Epithelial Cells , Mammary Glands, Animal/pathology
13.
Sci Rep ; 12(1): 4034, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260653

ABSTRACT

Natural Killer T (NKT) cells and Mucosal-Associated Invariant T (MAIT) cells are innate-like T cells that express semi-invariant αß T cell receptors (TCRs) through which they recognise CD1d and MR1 molecules, respectively, in complex with specific ligands. These cells play important roles in health and disease in many organs, but their precise intra-organ location is not well established. Here, using CD1d and MR1 tetramer staining techniques, we describe the precise location of NKT and MAIT cells in lymphoid and peripheral organs. Within the thymus, NKT cells were concentrated in the medullary side of the corticomedullary junction. In spleen and lymph nodes, NKT cells were mainly localised within T cell zones, although following in vivo activation with the potent NKT-cell ligand α-GalCer, they expanded throughout the spleen. MAIT cells were clearly detectable in Vα19 TCR transgenic mice and were rare but detectable in lymphoid tissue of non-transgenic mice. In contrast to NKT cells, MAIT cells were more closely associated with the B cell zone and red pulp of the spleen. Accordingly, we have provided an extensive analysis of the in situ localisation of NKT and MAIT cells and suggest differences between the intra-organ location of these two cell types.


Subject(s)
Lymphoid Tissue , Mucosal-Associated Invariant T Cells , Natural Killer T-Cells , Animals , Lymphoid Tissue/metabolism , Mice , Mice, Transgenic , Mucosal-Associated Invariant T Cells/metabolism , Natural Killer T-Cells/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism
14.
Mol Cell Biol ; 42(3): e0044921, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35041491

ABSTRACT

Adoptive cell therapy with chimeric antigen receptor (CAR) T cells has revolutionized the treatment of certain B cell malignancies but has been in ineffective against solid tumors. Recent studies have highlighted the potential of targeting negative regulators of T cell signaling to enhance the efficacy and extend the utility of CAR T cells to solid tumors. Autoimmunity-linked protein tyrosine phosphatase N22 (PTPN22) has been proposed as a target for cancer immunotherapy. Here, we have used CRISPR/Cas9 gene editing to generate PTPN22-deficient (Ptpn22Δ/Δ) mice (C57BL/6) and assessed the impact of PTPN22 deficiency on the cytotoxicity and efficacy of CAR T cells in vitro and in vivo. As reported previously, PTPN22 deficiency was accompanied by the promotion of effector T cell responses ex vivo and the repression of syngeneic tumor growth in vivo. However, PTPN22 deficiency did not enhance the cytotoxic activity of murine CAR T cells targeting the extracellular domain of the human oncoprotein HER2 in vitro. Moreover, PTPN22-deficient α-HER2 CAR T cells or ovalbumin-specific OT-I CD8+ T cells adoptively transferred into mice bearing HER2+ mammary tumors or ovalbumin-expressing mammary or colorectal tumors, respectively, were no more effective than their wild-type counterparts in suppressing tumor growth. The deletion of PTPN22 using CRISPR/Cas9 gene editing also did not affect the cytotoxic activity of human CAR T cells targeting the Lewis Y antigen that is expressed by many human solid tumors. Therefore, PTPN22 deficiency does not enhance the antitumor activity of CAR T cells in solid organ malignancies.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 22 , Receptors, Chimeric Antigen , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Mice , Mice, Inbred C57BL , Neoplasms/genetics , Ovalbumin , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Xenograft Model Antitumor Assays
15.
Cancer Discov ; 12(3): 752-773, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34794959

ABSTRACT

Immunotherapies aimed at alleviating the inhibitory constraints on T cells have revolutionized cancer management. To date, these have focused on the blockade of cell-surface checkpoints such as PD-1. Herein we identify protein tyrosine phosphatase 1B (PTP1B) as an intracellular checkpoint that is upregulated in T cells in tumors. We show that increased PTP1B limits T-cell expansion and cytotoxicity to contribute to tumor growth. T cell-specific PTP1B deletion increased STAT5 signaling, and this enhanced the antigen-induced expansion and cytotoxicity of CD8+ T cells to suppress tumor growth. The pharmacologic inhibition of PTP1B recapitulated the T cell-mediated repression of tumor growth and enhanced the response to PD-1 blockade. Furthermore, the deletion or inhibition of PTP1B enhanced the efficacy of adoptively transferred chimeric antigen receptor (CAR) T cells against solid tumors. Our findings identify PTP1B as an intracellular checkpoint whose inhibition can alleviate the inhibitory constraints on T cells and CAR T cells to combat cancer. SIGNIFICANCE: Tumors subvert antitumor immunity by engaging checkpoints that promote T-cell exhaustion. Here we identify PTP1B as an intracellular checkpoint and therapeutic target. We show that PTP1B is upregulated in intratumoral T cells and that its deletion or inhibition enhances T-cell antitumor activity and increases CAR T-cell effectiveness against solid tumors. This article is highlighted in the In This Issue feature, p. 587.


Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Humans , Immunotherapy, Adoptive , Mice , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Xenograft Model Antitumor Assays
16.
Cancer Res ; 81(23): 5803-5805, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853040

ABSTRACT

Cancer immunotherapy utilizing checkpoint blockade antibodies or adoptive cellular therapy (ACT) with tumor-specific T cells has led to unprecedented clinical responses in patients with cancer and has been considered one of the most significant breakthroughs in cancer treatment in the past decade. Nevertheless, many cancers remain refractory to these therapies due to the presence of an immunosuppressive tumor microenvironment. This has led to the innovative idea of combining ACT with checkpoint inhibition. A landmark 2004 study by Blank and colleagues published in Cancer Research was one of the original demonstrations that adoptive transfer of T cells lacking the negative T-cell regulator, PD-1, was able to restore functional T-cell antitumor activity, resulting in rapid regression of established tumors in a preclinical model. This work was instrumental in not only driving clinical studies utilizing checkpoint inhibition but also a new wave of recent trials involving checkpoint blockade in the setting of ACT.See related article by Blank and colleagues, Cancer Res 2004;64:1140-5.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , Humans , Immunotherapy , T-Lymphocytes , Tumor Microenvironment
17.
Cancer Cell ; 39(12): 1564-1566, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34739846

ABSTRACT

In this issue of Cancer Cell, Xue et al. demonstrate that adoptive transfer of tumor-specific Th9 cells can eradicate established tumors containing antigen-loss-variant cells (ALVs) through both direct killing and bystander effects mediated by intratumoral accumulation of extracellular ATP (eATP) that promotes monocyte infiltration and stimulation of IFNα/ß production.


Subject(s)
Neoplasms , Adoptive Transfer , Humans , Neoplasms/genetics , Neoplasms/therapy
18.
Cancers (Basel) ; 13(18)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34572932

ABSTRACT

Sarcomas are a diverse group of bone and soft tissue tumors that account for over 10% of childhood cancers. Outcomes are particularly poor for children with refractory, relapsed, or metastatic disease. Chimeric antigen receptor T (CAR T) cells are an exciting form of adoptive cell therapy that potentially offers new hope for these children. In early trials, promising outcomes have been achieved in some pediatric patients with sarcoma. However, many children do not derive benefit despite significant expression of the targeted tumor antigen. The success of CAR T cell therapy in sarcomas and other solid tumors is limited by the immunosuppressive tumor microenvironment (TME). In this review, we provide an update of the CAR T cell therapies that are currently being tested in pediatric sarcoma clinical trials, including those targeting tumors that express HER2, NY-ESO, GD2, EGFR, GPC3, B7-H3, and MAGE-A4. We also outline promising new CAR T cells that are in pre-clinical development. Finally, we discuss strategies that are being used to overcome tumor-mediated immunosuppression in solid tumors; these strategies have the potential to improve clinical outcomes of CAR T cell therapy for children with sarcoma.

19.
Clin Cancer Res ; 27(22): 6222-6234, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34475103

ABSTRACT

PURPOSE: In this article, we describe a combination chimeric antigen receptor (CAR) T-cell therapy that eradicated the majority of tumors in two immunocompetent murine pancreatic cancer models and a human pancreatic cancer xenograft model. EXPERIMENTAL DESIGN: We used a dual-specific murine CAR T cell that expresses a CAR against the Her2 tumor antigen, and a T-cell receptor (TCR) specific for gp100. As gp100 is also known as pMEL, the dual-specific CAR T cells are thus denoted as CARaMEL cells. A vaccine containing live vaccinia virus coding a gp100 minigene (VV-gp100) was administered to the recipient mice to stimulate CARaMEL cells. The treatment also included the histone deacetylase inhibitor panobinostat (Pano). RESULTS: The combination treatment enabled significant suppression of Her2+ pancreatic cancers leading to the eradication of the majority of the tumors. Besides inducing cancer cell apoptosis, Pano enhanced CAR T-cell gene accessibility and promoted CAR T-cell differentiation into central memory cells. To test the translational potential of this approach, we established a method to transduce human T cells with an anti-Her2 CAR and a gp100-TCR. The exposure of the human T cells to Pano promoted a T-cell central memory phenotype and the combination treatment of human CARaMEL cells and Pano eradicated human pancreatic cancer xenografts in mice. CONCLUSIONS: We propose that patients with pancreatic cancer could be treated using a scheme that contains dual-specific CAR T cells, a vaccine that activates the dual-specific CAR T cells through their TCR, and the administration of Pano.


Subject(s)
Pancreatic Neoplasms , Receptors, Chimeric Antigen , Animals , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Humans , Immunotherapy, Adoptive/methods , Mice , Pancreatic Neoplasms/therapy , Panobinostat , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes , Xenograft Model Antitumor Assays
20.
Nat Commun ; 12(1): 4746, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362900

ABSTRACT

The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.


Subject(s)
Immunity, Cellular , Killer Cells, Natural/immunology , Mucosal-Associated Invariant T Cells/immunology , Neoplasms/immunology , Animals , Antineoplastic Agents , Cell Line, Tumor , Cytokines , Histocompatibility Antigens Class I/genetics , Humans , Immunity , Mice , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Neoplasm Metastasis , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...