Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Immunity ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38744292

ABSTRACT

Upon parasitic helminth infection, activated intestinal tuft cells secrete interleukin-25 (IL-25), which initiates a type 2 immune response during which lamina propria type 2 innate lymphoid cells (ILC2s) produce IL-13. This causes epithelial remodeling, including tuft cell hyperplasia, the function of which is unknown. We identified a cholinergic effector function of tuft cells, which are the only epithelial cells that expressed choline acetyltransferase (ChAT). During parasite infection, mice with epithelial-specific deletion of ChAT had increased worm burden, fitness, and fecal egg counts, even though type 2 immune responses were comparable. Mechanistically, IL-13-amplified tuft cells release acetylcholine (ACh) into the gut lumen. Finally, we demonstrated a direct effect of ACh on worms, which reduced their fecundity via helminth-expressed muscarinic ACh receptors. Thus, tuft cells are sentinels in naive mice, and their amplification upon helminth infection provides an additional type 2 immune response effector function.

2.
J Immunol ; 212(6): 1029-1039, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38284984

ABSTRACT

Both identity and plasticity of CD4 T helper (Th) cells are regulated in part by epigenetic mechanisms. However, a method that reliably and readily profiles DNA base modifications is still needed to finely study Th cell differentiation. Cytosine methylation in CpG context (5mCpG) and cytosine hydroxymethylation (5hmCpG) are DNA modifications that identify stable cell phenotypes, but their potential to characterize intermediate cell transitions has not yet been evaluated. To assess transition states in Th cells, we developed a method to profile Th cell identity using Cas9-targeted single-molecule nanopore sequencing. Targeting as few as 10 selected genomic loci, we were able to distinguish major in vitro polarized murine T cell subtypes, as well as intermediate phenotypes, by their native DNA 5mCpG patterns. Moreover, by using off-target sequences, we were able to infer transcription factor activities relevant to each cell subtype. Detection of 5mCpG and 5hmCpG was validated on intestinal Th17 cells escaping transforming growth factor ß control, using single-molecule adaptive sampling. A total of 21 differentially methylated regions mapping to the 10-gene panel were identified in pathogenic Th17 cells relative to their nonpathogenic counterpart. Hence, our data highlight the potential to exploit native DNA methylation profiling to study physiological and pathological transition states of Th cells.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Animals , Mice , Cytosine , DNA/metabolism , Th17 Cells/metabolism
4.
Cancer Res Commun ; 3(6): 1041-1056, 2023 06.
Article in English | MEDLINE | ID: mdl-37377608

ABSTRACT

Glioblastomas (GBM) are heterogeneous tumors with high metabolic plasticity. Their poor prognosis is linked to the presence of glioblastoma stem cells (GSC), which support resistance to therapy, notably to temozolomide (TMZ). Mesenchymal stem cells (MSC) recruitment to GBM contributes to GSC chemoresistance, by mechanisms still poorly understood. Here, we provide evidence that MSCs transfer mitochondria to GSCs through tunneling nanotubes, which enhances GSCs resistance to TMZ. More precisely, our metabolomics analyses reveal that MSC mitochondria induce GSCs metabolic reprograming, with a nutrient shift from glucose to glutamine, a rewiring of the tricarboxylic acid cycle from glutaminolysis to reductive carboxylation and increase in orotate turnover as well as in pyrimidine and purine synthesis. Metabolomics analysis of GBM patient tissues at relapse after TMZ treatment documents increased concentrations of AMP, CMP, GMP, and UMP nucleotides and thus corroborate our in vitro analyses. Finally, we provide a mechanism whereby mitochondrial transfer from MSCs to GSCs contributes to GBM resistance to TMZ therapy, by demonstrating that inhibition of orotate production by Brequinar (BRQ) restores TMZ sensitivity in GSCs with acquired mitochondria. Altogether, these results identify a mechanism for GBM resistance to TMZ and reveal a metabolic dependency of chemoresistant GBM following the acquisition of exogenous mitochondria, which opens therapeutic perspectives based on synthetic lethality between TMZ and BRQ. Significance: Mitochondria acquired from MSCs enhance the chemoresistance of GBMs. The discovery that they also generate metabolic vulnerability in GSCs paves the way for novel therapeutic approaches.


Subject(s)
Brain Neoplasms , Glioblastoma , Mesenchymal Stem Cells , Humans , Glioblastoma/drug therapy , Drug Resistance, Neoplasm , Brain Neoplasms/drug therapy , Cell Line, Tumor , Temozolomide/pharmacology , Mitochondria , Neoplastic Stem Cells
5.
Proc Natl Acad Sci U S A ; 120(25): e2219431120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307458

ABSTRACT

Gut microbiota imbalance (dysbiosis) is increasingly associated with pathological conditions, both within and outside the gastrointestinal tract. Intestinal Paneth cells are considered to be guardians of the gut microbiota, but the events linking Paneth cell dysfunction with dysbiosis remain unclear. We report a three-step mechanism for dysbiosis initiation. Initial alterations in Paneth cells, as frequently observed in obese and inflammatorybowel diseases patients, cause a mild remodeling of microbiota, with amplification of succinate-producing species. SucnR1-dependent activation of epithelial tuft cells triggers a type 2 immune response that, in turn, aggravates the Paneth cell defaults, promoting dysbiosis and chronic inflammation. We thus reveal a function of tuft cells in promoting dysbiosis following Paneth cell deficiency and an unappreciated essential role of Paneth cells in maintaining a balanced microbiota to prevent inappropriate activation of tuft cells and deleterious dysbiosis. This succinate-tuft cell inflammation circuit may also contribute to the chronic dysbiosis observed in patients.


Subject(s)
Dysbiosis , Mucous Membrane , Humans , Inflammation , Paneth Cells , Succinates , Succinic Acid
6.
Blood ; 141(20): 2520-2536, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36735910

ABSTRACT

Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.


Subject(s)
Proteomics , Spermidine , Humans , Spermidine/metabolism , Peptide Initiation Factors/genetics , Cell Differentiation , Eukaryotic Translation Initiation Factor 5A
7.
Elife ; 122023 01 19.
Article in English | MEDLINE | ID: mdl-36656749

ABSTRACT

Quantitative differences in signal transduction are to date an understudied feature of tumour heterogeneity. The MAPK Erk pathway, which is activated in a large proportion of human tumours, is a prototypic example of distinct cell fates being driven by signal intensity. We have used primary hepatocyte precursors transformed with different dosages of an oncogenic form of Ras to model subclonal variations in MAPK signalling. Orthotopic allografts of Ras-transformed cells in immunocompromised mice gave rise to fast-growing aggressive tumours, both at the primary location and in the peritoneal cavity. Fluorescent labelling of cells expressing different oncogene levels, and consequently varying levels of MAPK Erk activation, highlighted the selection processes operating at the two sites of tumour growth. Indeed, significantly higher Ras expression was observed in primary as compared to secondary, metastatic sites, despite the apparent evolutionary trade-off of increased apoptotic death in the liver that correlated with high Ras dosage. Analysis of the immune tumour microenvironment at the two locations suggests that fast peritoneal tumour growth in the immunocompromised setting is abrogated in immunocompetent animals due to efficient antigen presentation by peritoneal dendritic cells. Furthermore, our data indicate that, in contrast to the metastatic-like outgrowth, strong MAPK signalling is required in the primary liver tumours to resist elimination by NK (natural killer) cells. Overall, this study describes a quantitative aspect of tumour heterogeneity and points to a potential vulnerability of a subtype of hepatocellular carcinoma as a function of MAPK Erk signalling intensity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/genetics , Killer Cells, Natural , Liver Neoplasms/genetics , MAP Kinase Signaling System , Signal Transduction , Tumor Microenvironment , ras Proteins/metabolism
8.
Eur J Immunol ; 52(3): 418-430, 2022 03.
Article in English | MEDLINE | ID: mdl-34961940

ABSTRACT

Alterations in cell metabolism can shift the differentiation of immune cells toward a regulatory or inflammatory phenotype, thus, opening up new therapeutic opportunities for immune-related diseases. Indeed, growing knowledge on T- cell metabolism has revealed differences in the metabolic programs of suppressive Tregs as compared to inflammatory Th1 and Th17 cells. In addition to Tregs, IL-10-producing regulatory B cells are crucial for maintaining tolerance, inhibiting inflammation, and autoimmunity. Yet, the metabolic networks regulating diverse B-lymphocyte responses are not well known. Here, we show that glutaminase blockade decreased downstream mTOR activation and attenuated IL-10 secretion. Direct suppression of mTOR activity by rapamycin selectively impaired IL-10 production by B cells whereas secretion was restored upon Glycogen synthase kinase 3 (GSK3) inhibition. Mechanistically, we found mTORC1 activation leads to GSK3 inhibition, identifying a key signalling pathway regulating IL-10 secretion by B lymphocytes. Thus, our results identify glutaminolysis and the mTOR/GSK3 signalling axis, as critical regulators of the generation of IL-10 producing B cells with regulatory functions.


Subject(s)
B-Lymphocytes, Regulatory , Interleukin-10 , Glutamine/metabolism , Glycogen Synthase Kinase 3 , Interleukin-10/metabolism , TOR Serine-Threonine Kinases/metabolism
9.
Cell Rep ; 37(5): 109911, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731632

ABSTRACT

Suppressive regulatory T cell (Treg) differentiation is controlled by diverse immunometabolic signaling pathways and intracellular metabolites. Here we show that cell-permeable α-ketoglutarate (αKG) alters the DNA methylation profile of naive CD4 T cells activated under Treg polarizing conditions, markedly attenuating FoxP3+ Treg differentiation and increasing inflammatory cytokines. Adoptive transfer of these T cells into tumor-bearing mice results in enhanced tumor infiltration, decreased FoxP3 expression, and delayed tumor growth. Mechanistically, αKG leads to an energetic state that is reprogrammed toward a mitochondrial metabolism, with increased oxidative phosphorylation and expression of mitochondrial complex enzymes. Furthermore, carbons from ectopic αKG are directly utilized in the generation of fatty acids, associated with lipidome remodeling and increased triacylglyceride stores. Notably, inhibition of either mitochondrial complex II or DGAT2-mediated triacylglyceride synthesis restores Treg differentiation and decreases the αKG-induced inflammatory phenotype. Thus, we identify a crosstalk between αKG, mitochondrial metabolism and triacylglyceride synthesis that controls Treg fate.


Subject(s)
Cell Differentiation/drug effects , Energy Metabolism/drug effects , Ketoglutaric Acids/pharmacology , Lipid Metabolism/drug effects , Mitochondria/drug effects , T-Lymphocytes, Regulatory/drug effects , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Diacylglycerol O-Acyltransferase/metabolism , Fibrosarcoma/genetics , Fibrosarcoma/immunology , Fibrosarcoma/metabolism , Fibrosarcoma/therapy , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Homeostasis , Humans , Immunotherapy, Adoptive , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Phenotype , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/transplantation , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism
10.
Nat Immunol ; 22(11): 1367-1374, 2021 11.
Article in English | MEDLINE | ID: mdl-34686862

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) represent innate homologs of type 2 helper T cells (TH2) that participate in immune defense and tissue homeostasis through production of type 2 cytokines. While T lymphocytes metabolically adapt to microenvironmental changes, knowledge of human ILC2 metabolism is limited, and its key regulators are unknown. Here, we show that circulating 'naive' ILC2s have an unexpected metabolic profile with a higher level of oxidative phosphorylation (OXPHOS) than natural killer (NK) cells. Accordingly, ILC2s are severely reduced in individuals with mitochondrial disease (MD) and impaired OXPHOS. Metabolomic and nutrient receptor analysis revealed ILC2 uptake of amino acids to sustain OXPHOS at steady state. Following activation with interleukin-33 (IL-33), ILC2s became highly proliferative, relying on glycolysis and mammalian target of rapamycin (mTOR) to produce IL-13 while continuing to fuel OXPHOS with amino acids to maintain cellular fitness and proliferation. Our results suggest that proliferation and function are metabolically uncoupled in human ILC2s, offering new strategies to target ILC2s in disease settings.


Subject(s)
Cell Proliferation , Cytokines/metabolism , Energy Metabolism , Immunity, Innate , Lymphocyte Activation , Mitochondrial Diseases/metabolism , Th2 Cells/metabolism , Amino Acids, Branched-Chain/metabolism , Arginine/metabolism , Case-Control Studies , Cell Proliferation/drug effects , Cells, Cultured , Energy Metabolism/drug effects , Humans , Immunity, Innate/drug effects , Interleukin-33/pharmacology , Lymphocyte Activation/drug effects , Mitochondria/metabolism , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/immunology , Phenotype , Th2 Cells/drug effects , Th2 Cells/immunology
11.
Cancers (Basel) ; 13(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34503088

ABSTRACT

CD19-directed CAR T-cells have been remarkably successful in treating patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) and transformed follicular lymphoma (t-FL). In this cohort study, we treated 60 patients with axicabtagene ciloleucel or tisagenlecleucel. Complete and partial metabolic responses (CMR/PMR) were obtained in 40% and 23% of patients, respectively. After 6.9 months of median follow-up, median progression-free survival (mPFS) and overall survival (mOS) were estimated at 3.1 and 12.3 months, respectively. Statistical analyses revealed that CMR, PFS, and OS were all significantly associated with age-adjusted international prognostic index (aaIPI, p < 0.05). T-cell subset phenotypes in the apheresis product tended to correlate with PFS. Within the final product, increased percentages of both CD4 and CD8 CAR+ effector memory cells (p = 0.02 and 0.01) were significantly associated with CMR. Furthermore, higher CMR/PMR rates were observed in patients with a higher maximal in vivo expansion of CAR T-cells (p = 0.05) and lower expression of the LAG3 and Tim3 markers of exhaustion phenotype (p = 0.01 and p = 0.04). Thus, we find that aaIPI at the time of infusion, phenotype of the CAR T product, in vivo CAR T-cell expansion, and low levels of LAG3/Tim3 are associated with the efficacy of CAR T-cell therapy in DLBCL patients.

12.
Cell Rep ; 34(5): 108723, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33535038

ABSTRACT

The metabolic changes controlling the stepwise differentiation of hematopoietic stem and progenitor cells (HSPCs) to mature erythrocytes are poorly understood. Here, we show that HSPC development to an erythroid-committed proerythroblast results in augmented glutaminolysis, generating alpha-ketoglutarate (αKG) and driving mitochondrial oxidative phosphorylation (OXPHOS). However, sequential late-stage erythropoiesis is dependent on decreasing αKG-driven OXPHOS, and we find that isocitrate dehydrogenase 1 (IDH1) plays a central role in this process. IDH1 downregulation augments mitochondrial oxidation of αKG and inhibits reticulocyte generation. Furthermore, IDH1 knockdown results in the generation of multinucleated erythroblasts, a morphological abnormality characteristic of myelodysplastic syndrome and congenital dyserythropoietic anemia. We identify vitamin C homeostasis as a critical regulator of ineffective erythropoiesis; oxidized ascorbate increases mitochondrial superoxide and significantly exacerbates the abnormal erythroblast phenotype of IDH1-downregulated progenitors, whereas vitamin C, scavenging reactive oxygen species (ROS) and reprogramming mitochondrial metabolism, rescues erythropoiesis. Thus, an IDH1-vitamin C crosstalk controls terminal steps of human erythroid differentiation.


Subject(s)
Ascorbic Acid/metabolism , Erythropoiesis/genetics , Isocitrate Dehydrogenase/metabolism , Mitochondria/metabolism , Cell Differentiation , Humans
13.
Blood Adv ; 5(1): 26-38, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33570622

ABSTRACT

Distinct metabolic demands accompany lymphocyte differentiation into short-lived effector and long-lived memory cells. How bioenergetics processes are structured in innate natural killer (NK) cells remains unclear. We demonstrate that circulating human CD56Dim (NKDim) cells have fused mitochondria and enhanced metabolism compared with CD56Br (NKBr) cells. Upon activation, these 2 subsets showed a dichotomous response, with further mitochondrial potentiation in NKBr cells vs paradoxical mitochondrial fission and depolarization in NKDim cells. The latter effect impaired interferon-γ production, but rescue was possible by inhibiting mitochondrial fragmentation, implicating mitochondrial polarization as a central regulator of NK cell function. NKDim cells are heterogeneous, and mitochondrial polarization was associated with enhanced survival and function in mature NKDim cells, including memory-like human cytomegalovirus-dependent CD57+NKG2C+ subsets. In contrast, patients with genetic defects in mitochondrial fusion had a deficiency in adaptive NK cells, which had poor survival in culture. These results support mitochondrial polarization as a central regulator of mature NK cell fitness.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Killer Cells, Natural , Lymphocyte Activation , Mitochondria
14.
Mol Cell ; 80(4): 555-557, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33217313

ABSTRACT

In this issue of Molecular Cell, Byun et al. (2020) find that the dual targeting of glutamine metabolism and the PD-L1 checkpoint inhibitor augments anti-tumor immunity. Mechanistically, decreased glutamine availability attenuated S-glutathionylation of SERCA, resulting in an increase in cytosolic calcium, enhanced NF-κB activity, and upregulation of programmed death-ligand 1.


Subject(s)
B7-H1 Antigen , Neoplasms , B7-H1 Antigen/genetics , Glutamine , Humans , NF-kappa B/genetics , Neoplasms/drug therapy , Neoplasms/genetics
15.
Nat Metab ; 1(7): 717-730, 2019 07.
Article in English | MEDLINE | ID: mdl-32373781

ABSTRACT

The susceptibility of CD4 T cells to human immunodeficiency virus 1 (HIV-1) infection is regulated by glucose and glutamine metabolism, but the relative contributions of these nutrients to infection are not known. Here we show that glutaminolysis is the major pathway fuelling the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in T-cell receptor-stimulated naïve, as well as memory CD4, subsets and is required for optimal HIV-1 infection. Under conditions of attenuated glutaminolysis, the α-ketoglutarate (α-KG) TCA rescues early steps in infection; exogenous α-KG promotes HIV-1 reverse transcription, rendering both naïve and memory cells more sensitive to infection. Blocking the glycolytic flux of pyruvate to lactate results in altered glucose carbon allocation to TCA and pentose phosphate pathway intermediates, an increase in OXPHOS and augmented HIV-1 reverse transcription. Moreover, HIV-1 infection is significantly higher in CD4 T cells selected on the basis of high mitochondrial biomass and OXPHOS activity. Therefore, the OXPHOS/aerobic glycolysis balance is a major regulator of HIV-1 infection in CD4 T lymphocytes.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Citric Acid Cycle , Glucose/metabolism , Glutamine/metabolism , HIV-1/pathogenicity , CD4-Positive T-Lymphocytes/immunology , Humans , Lymphocyte Activation
16.
Sci Signal ; 10(501)2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29042482

ABSTRACT

The polyphenol resveratrol activates the deacetylase Sirt1, resulting in various antioxidant, chemoprotectant, neuroprotective, cardioprotective, and anti-inflammatory properties. We found that at high concentrations of resveratrol, human CD4+ T cells showed defective antigen receptor signaling and arrest at the G1 stage of the cell cycle, whereas at low concentrations, cells were readily activated and exhibited enhanced Sirt1 deacetylase activity. Nevertheless, low-dose resveratrol rapidly stimulated genotoxic stress in the T cells, which resulted in engagement of a DNA damage response pathway that depended on the kinase ATR [ataxia telangiectasia-mutated (ATM) and Rad3-related], but not ATM, and subsequently in premitotic cell cycle arrest. The concomitant activation of p53 was coupled to the expression of gene products that regulate cell metabolism, leading to a metabolic reprogramming that was characterized by decreased glycolysis, increased glutamine consumption, and a shift to oxidative phosphorylation. These alterations in the bioenergetic homeostasis of CD4+ T cells resulted in enhanced effector function, with both naïve and memory CD4+ T cells secreting increased amounts of the inflammatory cytokine interferon-γ. Thus, our data highlight the wide range of metabolic adaptations that CD4+ T lymphocytes undergo in response to genomic stress.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , DNA Damage , G1 Phase Cell Cycle Checkpoints/drug effects , Signal Transduction/drug effects , Stilbenes/pharmacology , Adult , Antioxidants/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Cytokines/metabolism , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Profiling/methods , Glycolysis/drug effects , Glycolysis/genetics , Humans , Oxidative Phosphorylation/drug effects , Phosphorylation/drug effects , Resveratrol , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
17.
FEBS Lett ; 591(19): 3104-3118, 2017 10.
Article in English | MEDLINE | ID: mdl-28901530

ABSTRACT

T cells are stimulated by the engagement of antigen, cytokine, pathogen, and hormone receptors. While research performed over many years has focused on deciphering the molecular components of these pathways, recent data underscore the importance of the metabolic environment in conditioning responses to receptor engagement. The ability of T cells to undergo a massive proliferation and cytokine secretion in response to receptor signals requires alterations to their bioenergetic homeostasis, allowing them to meet new energetic and biosynthetic demands. The metabolic reprogramming of activated T cells is regulated not only by changes in intracellular nutrient uptake and utilization but also by nutrient and oxygen concentrations in the extracellular environment. Notably, the extracellular environment can be profoundly altered by pathological conditions such as infections and tumors, thereby perturbing the metabolism and function of antigen-specific T lymphocytes. This review highlights the interplay between diverse metabolic networks and the transcriptional/epigenetic states that condition T-cell differentiation, comparing the metabolic features of T lymphocytes with other immune cells. We further address recent discoveries in the metabolic pathways that govern T-cell function in physiological and pathological conditions.


Subject(s)
Cell Differentiation , Cell Lineage , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Animals , Epigenesis, Genetic , Humans , Metabolome/genetics , Signal Transduction
18.
Methods Mol Biol ; 1585: 201-216, 2017.
Article in English | MEDLINE | ID: mdl-28477198

ABSTRACT

Encephalitogenic and colitogenic effector T cells have been implicated in the induction of experimental autoimmune encephalomyelitis (EAE) and inflammatory bowel disease (IBD), respectively. Effector functions of Th1 and Th17 cells have been well characterized and described for the induction and development of EAE and IBD; however, the recently identified Th9 cells have also been suggested to play an important role in these autoimmune pathologies. Th9 cells, primarily characterized by their high level of production of IL-9, are not only essential in controlling extracellular pathogens but also contribute to the development of autoimmunity and allergic inflammation. Furthermore, it was also demonstrated that IL-9 promotes Th17 cell-mediated tissue pathology in EAE and it compromises the barrier functions of the gut in IBD. In vivo adoptive transfer of in vitro differentiated Th9 cells induces the development of autoimmune tissue inflammation in EAE and IBD. Here we describe methods for in vitro differentiation of naïve murine CD4+ T cells to generate IL-9-producing Th9 cells and follow their effector functions in EAE and IBD murine models.


Subject(s)
Autoimmunity/physiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Animals , Autoimmunity/genetics , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-2/metabolism , Interleukin-4/metabolism , Interleukin-9/metabolism , Mice , T-Lymphocyte Subsets/metabolism , Th1 Cells/metabolism , Th17 Cells/metabolism , Transforming Growth Factor alpha/metabolism
19.
Nat Immunol ; 18(3): 344-353, 2017 03.
Article in English | MEDLINE | ID: mdl-28114290

ABSTRACT

Although master transcription factors (TFs) are key to the development of specific T cell subsets, whether additional transcriptional regulators are induced by the same stimuli that dominantly repress the development of other, non-specific T cell lineages has not been fully elucidated. Through the use of regulatory T cells (Treg cells) induced by transforming growth factor-ß (TGF-ß), we identified the TF musculin (MSC) as being critical for the development of induced Treg cells (iTreg cells) by repression of the T helper type 2 (TH2) transcriptional program. Loss of MSC reduced expression of the Treg cell master TF Foxp3 and induced TH2 differentiation even under iTreg-cell-differentiation conditions. MSC interrupted binding of the TF GATA-3 to the locus encoding TH2-cell-related cytokines and diminished intrachromosomal interactions within that locus. MSC-deficient (Msc-/-) iTreg cells were unable to suppress TH2 responses, and Msc-/- mice spontaneously developed gut and lung inflammation with age. MSC therefore enforced Foxp3 expression and promoted the unidirectional induction of iTreg cells by repressing the TH2 developmental program.


Subject(s)
Cell Differentiation , Inflammation , Intestinal Mucosa/immunology , Pneumonia/immunology , T-Lymphocytes, Regulatory/physiology , Th2 Cells/physiology , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors , Cells, Cultured , Forkhead Transcription Factors/metabolism , GATA3 Transcription Factor/metabolism , Gene Expression Regulation , Inflammation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/genetics , Transcription, Genetic , Transforming Growth Factor beta/metabolism
20.
Immunol Cell Biol ; 95(4): 356-363, 2017 04.
Article in English | MEDLINE | ID: mdl-28003642

ABSTRACT

The potential for immunotherapy as a treatment option for cancer is clear from remarkable responses of some leukemia patients to adoptive cell transfer using autologous T cells genetically modified to express chimeric antigen receptors (CARs). However, the vast majority of cancers, in particular the more common solid cancers, such as those of the breast, colon and lung, fail to respond significantly to infusions of CAR T cells. Solid cancers present some formidable barriers to adoptive cell transfer, including suppression of T-cell function and inhibition of T-cell localization. In this review, we discuss the current state of CAR T-cell therapy in solid cancers, the variety of concepts being investigated to overcome these barriers as well as approaches aimed at increasing the specificity and safety of adoptive cell transfer.


Subject(s)
Breast Neoplasms/therapy , Cancer Vaccines/immunology , Colonic Neoplasms/therapy , Immunotherapy, Adoptive/methods , Lung Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/immunology , Breast Neoplasms/immunology , Cell Movement , Colonic Neoplasms/immunology , Genetic Engineering , Humans , Immune Tolerance , Lung Neoplasms/immunology , Receptors, Antigen, T-Cell/genetics , Recombinant Fusion Proteins/genetics , T-Lymphocytes/transplantation , Tumor Escape
SELECTION OF CITATIONS
SEARCH DETAIL
...