Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Int J Infect Dis ; 145: 107079, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697607

ABSTRACT

BACKGROUND: Limited epidemiologic studies have been conducted in Jordan describing the HIV epidemic. This study aimed to address this gap to inform HIV prevention and control. METHODS: A nationally-representative cross-sectional study was conducted among adults living with HIV in Jordan. Laboratory testing included HIV viral load and next-generation-sequencing-based clinical genotype. Log-binomial regression estimated risk ratios (RRs) and 95% confidence intervals (CIs). RESULTS: Among 231 (70%) participants, most were male (184/80%), and from Jordan (217/94%). Among 188 treatment-experienced-participants (>6 months), 165 (88%) were virally suppressed. High-level resistance was most frequent against nucleoside reverse transcriptase inhibitor (13/81%), and integrase-strand transfer inhibitor (INSTI) (10/62%) drugs among viremic (≥1000 HIV copies/mL) treatment-experienced participants with drug-resistant mutations (DRMs, n = 16). Common HIV subtypes (n = 43) were B (6/14%), A1 (5/12%), and CRF01_AE (5/12%); additionally, novel recombinant forms were detected. In multivariate analysis, independently higher risk for late diagnosis (n = 49) was observed with diagnosis through blood donation (vs check-up: RR 2.20, 95%CI 1.16-4.17) and earlier time-period of diagnosis (1986-2014 vs 2015-2021: RR 2.87, 95%CI 1.46-5.62). CONCLUSIONS: Late diagnosis and INSTI resistance endanger national HIV prevention and treatment in Jordan-high-level resistance to INSTI suggests therapeutic drug monitoring is needed for treatment efficacy and conservation of treatment options.

2.
PLoS Pathog ; 19(12): e1011780, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38055771

ABSTRACT

Subtype B HIV-1 has been the primary driver of the HIV-1 epidemic in the United States (U.S.) for over forty years and is also a prominent subtype in the Americas, Europe, Australia, the Middle East and North Africa. In this study, the neutralization profiles of contemporary subtype B Envs from the U.S. were assessed to characterize changes in neutralization sensitivities over time. We generated a panel of 30 contemporary pseudoviruses (PSVs) and demonstrated continued diversification of subtype B Env from the 1980s up to 2018. Neutralization sensitivities of the contemporary subtype B PSVs were characterized using 31 neutralizing antibodies (NAbs) and were compared with strains from earlier in the HIV-1 pandemic. A significant reduction in Env neutralization sensitivity was observed for 27 out of 31 NAbs for the contemporary as compared to earlier-decade subtype B PSVs. A decline in neutralization sensitivity was observed across all Env domains; the NAbs that were most potent early in the pandemic suffered the greatest decline in potency over time. A meta-analysis demonstrated this trend across multiple subtypes. As HIV-1 Env diversification continues, changes in Env antigenicity and neutralization sensitivity should continue to be evaluated to inform the development of improved vaccine and antibody products to prevent and treat HIV-1.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , United States/epidemiology , HIV Antibodies , Neutralization Tests , HIV-1/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , Antibodies, Neutralizing , Pandemics
3.
EBioMedicine ; 94: 104683, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37413891

ABSTRACT

BACKGROUND: COVID-19 vaccines have been critical for protection against severe disease following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but gaps remain in our understanding of the immune responses that contribute to controlling subclinical and mild infections. METHODS: Vaccinated, active-duty US military service members were enrolled in a non-interventional, minimal-risk, observational study starting in May, 2021. Clinical data, serum, and saliva samples were collected from study participants and were used to characterise the humoral immune responses to vaccination and to assess its impact on clinical and subclinical infections, as well as virologic outcomes of breakthrough infections (BTI) including viral load and infection duration. FINDINGS: The majority of VIRAMP participants had received the Pfizer COVID-19 vaccine and by January, 2022, N = 149 had a BTI. The median BTI duration (PCR+ days) was 4 days and the interquartile range was 1-8 days. Participants that were nucleocapsid seropositive prior to their BTI had significantly higher levels of binding and functional antibodies to the spike protein, shorter median duration of infections, and lower median peak viral loads compared to seronegative participants. Furthermore, levels of neutralising antibody, ACE2 blocking activity, and spike-specific IgA measured prior to BTI also correlated with the duration of infection. INTERPRETATION: We extended previous findings and demonstrate that a subset of vaccine-induced humoral immune responses, along with nucleocapsid serostatus are associated with control of SARS-CoV-2 breakthrough infections in the upper airways. FUNDING: This work was funded by the DoD Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) in collaboration with the Defense Health Agency (DHA) COVID-19 funding initiative for the VIRAMP study.


Subject(s)
COVID-19 , Military Personnel , Humans , COVID-19 Vaccines , SARS-CoV-2 , Immunity, Humoral , Breakthrough Infections , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
4.
Lancet Infect Dis ; 23(10): 1175-1185, 2023 10.
Article in English | MEDLINE | ID: mdl-37390836

ABSTRACT

BACKGROUND: Zika virus infection is a threat to at-risk populations, causing major birth defects and serious neurological complications. Development of a safe and efficacious Zika virus vaccine is, therefore, a global health priority. Assessment of heterologous flavivirus vaccination is important given co-circulation of Japanese encephalitis virus and yellow fever virus with Zika virus. We investigated the effect of priming flavivirus naive participants with a licensed flavivirus vaccine on the safety and immunogenicity of a purified inactivated Zika vaccine (ZPIV). METHODS: This phase 1, placebo-controlled, double-blind trial was done at the Walter Reed Army Institute of Research Clinical Trials Center in Silver Spring, MD, USA. Eligible participants were healthy adults aged 18-49 years, with no detectable evidence of previous flavivirus exposure (by infection or vaccination), as measured by a microneutralisation assay. Individuals with serological evidence of HIV, hepatitis B, or hepatitis C infection were excluded, as were pregnant or breastfeeding women. Participants were recruited sequentially into one of three groups (1:1:1) to receive no primer, two doses of intramuscular Japanese encephalitis virus vaccine (IXIARO), or a single dose of subcutaneous yellow fever virus vaccine (YF-VAX). Within each group, participants were randomly assigned (4:1) to receive intramuscular ZPIV or placebo. Priming vaccinations were given 72-96 days before ZPIV. ZPIV was administered either two or three times, at days 0, 28, and 196-234. The primary outcome was occurrence of solicited systemic and local adverse events along with serious adverse events and adverse events of special interest. These data were analysed in all participants receiving at least one dose of ZPIV or placebo. Secondary outcomes included measurement of neutralizing antibody responses following ZPIV vaccination in all volunteers with available post-vaccination data. This trial is registered at ClinicalTrials.gov, NCT02963909. FINDINGS: Between Nov 7, 2016, and Oct 30, 2018, 134 participants were assessed for eligibility. 21 did not meet inclusion criteria, 29 met exclusion criteria, and ten declined to participate. 75 participants were recruited and randomly assigned. 35 (47%) of 75 participants were male and 40 (53%) were female. 25 (33%) of 75 participants identified as Black or African American and 42 (56%) identified as White. These proportions and other baseline characteristics were similar between groups. There were no statistically significant differences in age, gender, race, or BMI between those who did and did not opt into the third dose. All participants received the planned priming IXIARO and YF-VAX vaccinations, but one participant who received YF-VAX dropped out before receipt of the first dose of ZPIV. 50 participants received a third dose of ZPIV or placebo, including 14 flavivirus-naive people, 17 people primed with Japanese encephalitis virus vaccine, and 19 participants primed with yellow fever vaccine. Vaccinations were well tolerated across groups. Pain at the injection site was the only adverse event reported more frequently in participants who received ZPIV than in those who received placebo (39 [65%] of 60 participants, 95% CI 51·6-76·9 who received ZPIV vs three [21·4%] of 14 who received placebo; 4·7-50·8; p=0·006). No patients had an adverse event of special interest or serious adverse event related to study treatment. At day 57, the flavivirus-naive volunteers had an 88% (63·6-98·5, 15 of 17) seroconversion rate (neutralising antibody titre ≥1:10) and geometric mean neutralising antibody titre (GMT) against Zika virus of 100·8 (39·7-255·7). In the Japanese encephalitis vaccine-primed group, the day 57 seroconversion rate was 31·6% (95% CI 12·6-56·6, six of 19) and GMT was 11·8 (6·1-22·8). Participants primed with YF-VAX had a seroconversion rate of 25% (95% CI 8·7-49·1, five of 20) and GMT of 6·6 (5·2-8·4). Humoral immune responses rose substantially following a third dose of ZPIV, with seroconversion rates of 100% (69·2-100; ten of ten), 92·9% (66·1-99·8; 13 of 14), and 60% (32·2-83·7, nine of 15) and GMTs of 511·5 (177·6-1473·6), 174·2 (51·6-587·6), and 79 (19·0-326·8) in the flavivirus naive, Japanese encephalitis vaccine-primed, and yellow fever vaccine-primed groups, respectively. INTERPRETATION: We found ZPIV to be well tolerated in flavivirus naive and primed adults but that immunogenicity varied significantly according to antecedent flavivirus vaccination status. Immune bias towards the flavivirus antigen of initial exposure and the timing of vaccination may have impacted responses. A third ZPIV dose overcame much, but not all, of the discrepancy in immunogenicity. The results of this phase 1 clinical trial have implications for further evaluation of ZPIV's immunisation schedule and use of concomitant vaccinations. FUNDING: Department of Defense, Defense Health Agency; National Institute of Allergy and Infectious Diseases; and Division of Microbiology and Infectious Disease.


Subject(s)
Encephalitis Virus, Japanese , Japanese Encephalitis Vaccines , Viral Vaccines , Yellow Fever Vaccine , Zika Virus Infection , Zika Virus , Adult , Female , Humans , Male , Antibodies, Neutralizing , Antibodies, Viral , Double-Blind Method , Immunogenicity, Vaccine , Japanese Encephalitis Vaccines/adverse effects , Vaccines, Inactivated , Yellow Fever Vaccine/adverse effects , Yellow fever virus , Zika Virus Infection/prevention & control , Yellow Fever/prevention & control
5.
PLoS One ; 18(6): e0287576, 2023.
Article in English | MEDLINE | ID: mdl-37384714

ABSTRACT

OBJECTIVE: Validate the performance characteristics of two analyte specific, laboratory developed tests (LDTs) for the quantification of SARS-CoV-2 subgenomic RNA (sgRNA) and viral load on the Hologic Panther Fusion® using the Open Access functionality. METHODS: Custom-designed primers/probe sets targeting the SARS-CoV-2 Envelope gene (E) and subgenomic E were optimized. A 20-day performance validation following laboratory developed test requirements was conducted to assess assay precision, accuracy, analytical sensitivity/specificity, lower limit of detection and reportable range. RESULTS: Quantitative SARS-CoV-2 sgRNA (LDT-Quant sgRNA) assay, which measures intermediates of replication, and viral load (LDT-Quant VLCoV) assay demonstrated acceptable performance. Both assays were linear with an R2 and slope equal to 0.99 and 1.00, respectively. Assay precision was evaluated between 4-6 Log10 with a maximum CV of 2.6% and 2.5% for LDT-Quant sgRNA and LDT-Quant VLCoV respectively. Using negative or positive SARS-CoV-2 human nasopharyngeal swab samples, both assays were accurate (kappa coefficient of 1.00 and 0.92). Common respiratory flora and other viral pathogens were not detected and did not interfere with the detection or quantification by either assay. Based on 95% detection, the assay LLODs were 729 and 1206 Copies/mL for the sgRNA and VL load LDTs, respectively. CONCLUSION: The LDT-Quant sgRNA and LDT-Quant VLCoV demonstrated good analytical performance. These assays could be further investigated as alternative monitoring assays for viral replication; and thus, medical management in clinical settings which could inform isolation/quarantine requirements.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Subgenomic RNA , Viral Load , Biological Assay , RNA
6.
PLoS One ; 18(1): e0280783, 2023.
Article in English | MEDLINE | ID: mdl-36662886

ABSTRACT

BACKGROUND: Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are the most common bacterial causes of sexually transmitted infection (STI) in the United States (US). The purpose of this study was to determine the frequency of reinfection during a six-month study period and to evaluate the retesting interval for those infected with CT or NG. METHODS: We conducted a prospective, six-month follow-up study among US military personnel with new onset, laboratory-confirmed CT or NG, recruited from an STI clinic at a large military base from January 2018 to January 2020. Each participant was randomly assigned to one of four groups, which differed only by the timing of the first study-associated follow-up visit after CT or NG diagnosis. RESULTS: Of the 347 initially recruited into the study, 267 participants completed a follow-up visit prior to their scheduled, final visit 6 months after initial infection. The median age at enrollment was 22 years and 41.0% were female. There were 32 (12.0%) reinfections (30 CT and 2 NG) after treatment of an index diagnosis of CT or NG within the six-month study period. Six of the CT reinfections were only detected at the final visit. A review of medical records revealed additional CT and NG reinfections. The probability of detecting a reinfection did not vary significantly by timing of follow-up. CONCLUSIONS: The likelihood of detecting CT or NG reinfection did not differ according to time of follow up visit among study participants, thus supporting CDC guidance to retest three months post treatment. Efforts should continue to focus on STI prevention and risk reduction.


Subject(s)
Chlamydia Infections , Gonorrhea , Sexually Transmitted Diseases , Humans , Female , United States/epidemiology , Male , Gonorrhea/diagnosis , Gonorrhea/epidemiology , Gonorrhea/prevention & control , Chlamydia trachomatis , Reinfection , Follow-Up Studies , Prospective Studies , Chlamydia Infections/diagnosis , Chlamydia Infections/epidemiology , Chlamydia Infections/prevention & control , Sexually Transmitted Diseases/prevention & control , Neisseria gonorrhoeae , Prevalence
7.
PLoS One ; 17(11): e0276729, 2022.
Article in English | MEDLINE | ID: mdl-36342921

ABSTRACT

Combining diagnostic specimens into pools has been considered as a strategy to augment throughput, decrease turnaround time, and leverage resources. This study utilized a multi-parametric approach to assess optimum pool size, impact of automation, and effect of nucleic acid amplification chemistries on the detection of SARS-CoV-2 RNA in pooled samples for surveillance testing on the Hologic Panther Fusion® System. Dorfman pooled testing was conducted with previously tested SARS-CoV-2 nasopharyngeal samples using Hologic's Aptima® and Panther Fusion® SARS-CoV-2 Emergency Use Authorization assays. A manual workflow was used to generate pool sizes of 5:1 (five samples: one positive, four negative) and 10:1. An automated workflow was used to generate pool sizes of 3:1, 4:1, 5:1, 8:1 and 10:1. The impact of pool size, pooling method, and assay chemistry on sensitivity, specificity, and lower limit of detection (LLOD) was evaluated. Both the Hologic Aptima® and Panther Fusion® SARS-CoV-2 assays demonstrated >85% positive percent agreement between neat testing and pool sizes ≤5:1, satisfying FDA recommendation. Discordant results between neat and pooled testing were more frequent for positive samples with CT>35. Fusion® CT (cycle threshold) values for pooled samples increased as expected for pool sizes of 5:1 (CT increase of 1.92-2.41) and 10:1 (CT increase of 3.03-3.29). The Fusion® assay demonstrated lower LLOD than the Aptima® assay for pooled testing (956 vs 1503 cp/mL, pool size of 5:1). Lowering the cut-off threshold of the Aptima® assay from 560 kRLU (manufacturer's setting) to 350 kRLU improved the assay sensitivity to that of the Fusion® assay for pooled testing. Both Hologic's SARS-CoV-2 assays met the FDA recommended guidelines for percent positive agreement (>85%) for pool sizes ≤5:1. Automated pooling increased test throughput and enabled automated sample tracking while requiring less labor. The Fusion® SARS-CoV-2 assay, which demonstrated a lower LLOD, may be more appropriate for surveillance testing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Automation , Sensitivity and Specificity
8.
Front Immunol ; 13: 901217, 2022.
Article in English | MEDLINE | ID: mdl-35711449

ABSTRACT

Fc-mediated virus entry has been observed for many viruses, but the characterization of this activity in convalescent plasma against SARS-CoV-2 Variants of Concern (VOC) is undefined. In this study, we evaluated Fc-mediated viral entry (FVE) on FcγRIIa-expressing HEK293 cells in the presence of SARS-CoV-2 convalescent plasma and compared it with SARS-CoV-2 pseudovirus neutralization using ACE2-expressing HEK293 cells. The plasma were collected early in the pandemic from 39 individuals. We observed both neutralization and FVE against the infecting Washington SARS-CoV-2 strain for 31% of plasmas, neutralization, but not FVE for 61% of plasmas, and no neutralization or FVE for 8% of plasmas. Neutralization titer correlated significantly with the plasma dilution at which maximum FVE was observed, indicating Fc-mediated uptake peaked as neutralization potency waned. While total Spike-specific plasma IgG levels were similar between plasma that mediated FVE and those that did not, Spike-specific plasma IgM levels were significantly higher in plasma that did not mediate FVE. Plasma neutralization titers against the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) VOC were significantly lower than titers against the Washington strain, while plasma FVE activity against the VOC was either higher or similar. This is the first report to demonstrate a functional shift in convalescent plasma antibodies from neutralizing and FVE-mediating against the earlier Washington strain, to an activity mediating only FVE and no neutralization activity against the emerging VOC, specifically the Beta (B.1.351) and Gamma (P.1) VOC. It will be important to determine the in vivo relevance of these findings.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/therapy , HEK293 Cells , Humans , Immunization, Passive , Immunoglobulin Fc Fragments , Spike Glycoprotein, Coronavirus , Virus Internalization , COVID-19 Serotherapy
9.
J Infect Dis ; 226(10): 1743-1752, 2022 11 11.
Article in English | MEDLINE | ID: mdl-35543272

ABSTRACT

BACKGROUND: Laboratory screening for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key mitigation measure to avoid the spread of infection among recruits starting basic combat training in a congregate setting. Because viral nucleic acid can be detected persistently after recovery, we evaluated other laboratory markers to distinguish recruits who could proceed with training from those who were infected. METHODS: Recruits isolated for coronavirus disease 2019 (COVID-19) were serially tested for SARS-CoV-2 subgenomic ribonucleic acid (sgRNA), and viral load (VL) by reverse-transcriptase polymerase chain reaction (RT-PCR), and for anti- SARS-CoV-2. Cluster and quadratic discriminant analyses of results were performed. RESULTS: Among 229 recruits isolated for COVID-19, those with a RT-PCR cycle threshold >30.49 (sensitivity 95%, specificity 96%) or having sgRNA log10 RNA copies/mL <3.09 (sensitivity and specificity 96%) at entry into isolation were likely SARS-CoV-2 uninfected. Viral load >4.58 log10 RNA copies/mL or anti-SARS-CoV-2 signal-to-cutoff ratio <1.38 (VL: sensitivity and specificity 93%; anti-SARS-CoV-2: sensitivity 83%, specificity 79%) had comparatively lower sensitivity and specificity when used alone for discrimination of infected from uninfected. CONCLUSIONS: Orthogonal laboratory assays used in combination with RT-PCR may have utility in determining SARS-CoV-2 infection status for decisions regarding isolation.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , COVID-19 Testing , Sensitivity and Specificity , RNA , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction
10.
NPJ Vaccines ; 6(1): 129, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34711815

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a SARS-CoV-2 spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the Alpha (B.1.1.7), and Beta (B.1.351) VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose vaccinations. Dose-dependent SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

11.
bioRxiv ; 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34159328

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the B.1.1.7 and B.1.351 VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) immunogen dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose two vaccinations. SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

12.
PLoS One ; 16(6): e0252628, 2021.
Article in English | MEDLINE | ID: mdl-34081747

ABSTRACT

Serological assessment of SARS-CoV-2 specific responses are an essential tool for determining the prevalence of past SARS-CoV-2 infections in the population especially when testing occurs after symptoms have developed and limited contact tracing is in place. The goal of our study was to test a new 10-plex electro-chemiluminescence-based assay to measure IgM and IgG responses to the spike proteins from multiple human coronaviruses including SARS-CoV-2, assess the epitope specificity of the SARS-CoV-2 antibody response against full-length spike protein, receptor-binding domain and N-terminal domain of the spike protein, and the nucleocapsid protein. We carried out the assay on samples collected from three sample groups: subjects diagnosed with COVID-19 from the U.S. Army hospital at Camp Humphreys in Pyeongtaek, South Korea; healthcare administrators from the same hospital but with no reported diagnosis of COVID-19; and pre-pandemic samples. We found that the new CoV-specific multiplex assay was highly sensitive allowing plasma samples to be diluted 1:30,000 with a robust signal. The reactivity of IgG responses to SARS-CoV-2 nucleocapsid protein and IgM responses to SARS-CoV-2 spike protein could distinguish COVID-19 samples from non-COVID-19 and pre-pandemic samples. The data from the three sample groups also revealed a unique pattern of cross-reactivity between SARS-CoV-2 and SARS-CoV-1, MERS-CoV, and seasonal coronaviruses HKU1 and OC43. Our findings show that the CoV-2 IgM response is highly specific while the CoV-2 IgG response is more cross-reactive across a range of human CoVs and also showed that IgM and IgG responses show distinct patterns of epitope specificity. In summary, this multiplex assay was able to distinguish samples by COVID-19 status and characterize distinct trends in terms of cross-reactivity and fine-specificity in antibody responses, underscoring its potential value in diagnostic or serosurveillance efforts.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/analysis , Antibody Formation , Cross Reactions , Female , Humans , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Immunoglobulin M/analysis , Immunoglobulin M/immunology , Luminescence , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/immunology , Military Personnel , Nucleocapsid Proteins/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology , United States
13.
Lancet Infect Dis ; 19(9): 1013-1022, 2019 09.
Article in English | MEDLINE | ID: mdl-31351922

ABSTRACT

BACKGROUND: Middle East respiratory syndrome (MERS) coronavirus causes a highly fatal lower-respiratory tract infection. There are as yet no licensed MERS vaccines or therapeutics. This study (WRAIR-2274) assessed the safety, tolerability, and immunogenicity of the GLS-5300 MERS coronavirus DNA vaccine in healthy adults. METHODS: This study was a phase 1, open-label, single-arm, dose-escalation study of GLS-5300 done at the Walter Reed Army Institute for Research Clinical Trials Center (Silver Spring, MD, USA). We enrolled healthy adults aged 18-50 years; exclusion criteria included previous infection or treatment of MERS. Eligible participants were enrolled sequentially using a dose-escalation protocol to receive 0·67 mg, 2 mg, or 6 mg GLS-5300 administered by trained clinical site staff via a single intramuscular 1 mL injection at each vaccination at baseline, week 4, and week 12 followed immediately by co-localised intramuscular electroporation. Enrolment into the higher dose groups occurred after a safety monitoring committee reviewed the data following vaccination of the first five participants at the previous lower dose in each group. The primary outcome of the study was safety, assessed in all participants who received at least one study treatment and for whom post-dose study data were available, during the vaccination period with follow-up through to 48 weeks after dose 3. Safety was measured by the incidence of adverse events; administration site reactions and pain; and changes in safety laboratory parameters. The secondary outcome was immunogenicity. This trial is registered at ClinicalTrials.gov (number NCT02670187) and is completed. FINDINGS: Between Feb 17 and July 22, 2016, we enrolled 75 individuals and allocated 25 each to 0·67 mg, 2 mg, or 6 mg GLS-5300. No vaccine-associated serious adverse events were reported. The most common adverse events were injection-site reactions, reported in 70 participants (93%) of 75. Overall, 73 participants (97%) of 75 reported at least one solicited adverse event; the most common systemic symptoms were headache (five [20%] with 0·67 mg, 11 [44%] with 2 mg, and seven [28%] with 6 mg), and malaise or fatigue (five [20%] with 0·67 mg, seven [28%] with 2 mg, and two [8%] with 6 mg). The most common local solicited symptoms were administration site pain (23 [92%] with all three doses) and tenderness (21 [84%] with all three doses). Most solicited symptoms were reported as mild (19 [76%] with 0·67 mg, 20 [80%] with 2 mg, and 17 [68%] with 6 mg) and were self-limiting. Unsolicited symptoms were reported for 56 participants (75%) of 75 and were deemed treatment-related for 26 (35%). The most common unsolicited adverse events were infections, occurring in 27 participants (36%); six (8%) were deemed possibly related to study treatment. There were no laboratory abnormalities of grade 3 or higher that were related to study treatment; laboratory abnormalities were uncommon, except for 15 increases in creatine phosphokinase in 14 participants (three participants in the 0·67 mg group, three in the 2 mg group, and seven in the 6 mg group). Of these 15 increases, five (33%) were deemed possibly related to study treatment (one in the 2 mg group and four in the 6 mg group). Seroconversion measured by S1-ELISA occurred in 59 (86%) of 69 participants and 61 (94%) of 65 participants after two and three vaccinations, respectively. Neutralising antibodies were detected in 34 (50%) of 68 participants. T-cell responses were detected in 47 (71%) of 66 participants after two vaccinations and in 44 (76%) of 58 participants after three vaccinations. There were no differences in immune responses between dose groups after 6 weeks. At week 60, vaccine-induced humoral and cellular responses were detected in 51 (77%) of 66 participants and 42 (64%) of 66, respectively. INTERPRETATION: The GLS-5300 MERS coronavirus vaccine was well tolerated with no vaccine-associated serious adverse events. Immune responses were dose-independent, detected in more than 85% of participants after two vaccinations, and durable through 1 year of follow-up. The data support further development of the GLS-5300 vaccine, including additional studies to test the efficacy of GLS-5300 in a region endemic for MERS coronavirus. FUNDING: US Department of the Army and GeneOne Life Science.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , DNA, Viral/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Viral Vaccines/immunology , Adult , Fatigue/chemically induced , Female , Headache/chemically induced , Humans , Immunity, Cellular , Injection Site Reaction , Male , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Young Adult
14.
Am J Clin Pathol ; 140(6): 881-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24225757

ABSTRACT

OBJECTIVES: To evaluate an external quality assurance (EQA) program for the laboratory diagnosis of human papillomavirus (HPV) disease that was established to improve international research capability within the Division of AIDS at the National Institute of Allergy and Infectious Disease-supported Adult AIDS Clinical Trials Group network. METHODS: A three-component EQA scheme was devised comprising assessments of diagnostic accuracy of cytotechnologists and pathologists using available EQA panels, review of quality and accuracy of clinical slides from local sites by an outside expert, and HPV DNA detection using a commercially available HPV test kit. RESULTS: Seven laboratories and 17 pathologists in Africa, India, and South America participated. EQA scores were suboptimal for EQA proficiency testing panels in three of seven laboratories. There was good agreement between the local laboratory and the central reader 70% of the time (90% confidence interval, 42%-98%). Performance on the College of American Pathologists' HPV DNA testing panel was successful in all laboratories tested. CONCLUSIONS: The prequalifying EQA round identified correctable issues that will improve the laboratory diagnosis of HPV-related cervical disease at the participating international study sites and will provide a mechanism for ongoing education and continuous quality improvement.


Subject(s)
Human Papillomavirus DNA Tests/standards , Laboratories/standards , Papillomavirus Infections/diagnosis , Quality Assurance, Health Care/standards , Uterine Cervical Neoplasms/prevention & control , Acquired Immunodeficiency Syndrome , Clinical Trials, Phase II as Topic , Female , Human Papillomavirus DNA Tests/methods , Humans , Mass Screening/methods , National Institutes of Health (U.S.) , Pathology/standards , Quality Assurance, Health Care/methods , Randomized Controlled Trials as Topic , United States
15.
PLoS One ; 6(9): e24254, 2011.
Article in English | MEDLINE | ID: mdl-21949699

ABSTRACT

BACKGROUND: We conducted a novel pilot study comparing different delivery routes of ALVAC-HIV (vCP205), a canarypox vaccine containing HIV gene inserts: env, gag and pol. We explored the concept that direct ex vivo targeting of human dendritic cells (DC) would enhance the immune response compared to either conventional intramuscular or intradermal injections of the vaccine alone. METHODOLOGY/PRINCIPAL FINDINGS: Healthy HIV-1 uninfected volunteers were administered ALVAC-HIV or placebo by intramuscular injection (i.m.), intradermal injection (i.d.) or subcutaneous injection (s.q.) of autologous ex vivo transfected DC at months 0, 1, 3 and 6. All vaccine delivery routes were well tolerated. Binding antibodies were observed to both the ALVAC vector and HIV-1 gp160 proteins. Modest cellular responses were observed in 2/7 individuals in the DC arm and 1/8 in the i.m. arm as determined by IFN-γ ELISPOT. Proliferative responses were most frequent in the DC arm where 4/7 individuals had measurable responses to multiple HIV-1 antigens. Loading DC after maturation resulted in lower gene expression, but overall better responses to both HIV-1 and control antigens, and were associated with better IL-2, TNF-α and IFN-γ production. CONCLUSIONS/SIGNIFICANCE: ALVAC-HIV delivered i.m., i.d. or s.q. with autologous ex vivo transfected DC proved to be safe. The DC arm was most immunogenic. Proliferative immune responses were readily detected with only modest cytotoxic CD8 T cell responses. Loading mature DC with the live viral vaccine induced stronger immune responses than loading immature DC, despite increased transgene expression with the latter approach. Volunteers who received the autologous vaccine loaded mature DC developed a broader and durable immune response compared to those vaccinated by conventional routes. TRIAL REGISTRATION: ClinicalTrials.gov NCT00013572.


Subject(s)
AIDS Vaccines/immunology , Dendritic Cells/immunology , HIV Infections/immunology , HIV-1/immunology , AIDS Vaccines/administration & dosage , Adult , Cytokines/blood , Cytokines/immunology , Dendritic Cells/metabolism , Dendritic Cells/transplantation , Double-Blind Method , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression/immunology , Gene Expression Profiling , HIV Antibodies/blood , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp160/immunology , HIV Infections/prevention & control , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Injections, Intradermal , Injections, Intramuscular , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Pilot Projects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Time Factors , Viral Vaccines/immunology
16.
J Immunol Methods ; 363(2): 143-57, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-20727897

ABSTRACT

When evaluating candidate prophylactic HIV and cancer vaccines, intracellular cytokine staining (ICS) assays that measure the frequency and magnitude of antigen-specific T-cell subsets are one tool to monitor immunogen performance and make product advancement decisions. To assess the inter-laboratory assay variation among multiple laboratories testing vaccine candidates, the NIH/NIAID/DAIDS in collaboration with BD Biosciences implemented an ICS Quality Assurance Program (QAP). Seven rounds of testing have been conducted in which 16 laboratories worldwide participated. In each round, IFN-γ, IL-2 and/or TNF-α responses in CD4+ and CD8+ T-cells to CEF or CMV pp65 peptide mixes were tested using cryopreserved peripheral blood mononuclear cells (PBMC) from CMV seropositive donors. We found that for responses measured above 0.2%, inter-laboratory %CVs were, on average, 35%. No differences in inter-laboratory variation were observed if a 4-color antibody cocktail or a 7-color combination was used. Moreover, the data allowed identification of important sources of variability for flow cytometry-based assays, including: number of collected events, gating strategy and instrument setup and performance. As a consequence, in this multi-site study we were able to define pass and fail criteria for ICS assays, which will be adopted in the subsequent rounds of testing and could be easily extrapolated to QAP for other flow cytometry-based assays.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Flow Cytometry/methods , Interferon-gamma/blood , Interleukin-2/blood , Tumor Necrosis Factor-alpha/blood , Flow Cytometry/standards , Fluorescent Dyes/chemistry , Humans , Leukocytes, Mononuclear/immunology , Observer Variation , Phosphoproteins/immunology , Saccharomyces cerevisiae Proteins/immunology , Statistics, Nonparametric , Vesicular Transport Proteins/immunology , Viral Matrix Proteins/immunology
17.
BMC Immunol ; 6: 13, 2005 Jun 24.
Article in English | MEDLINE | ID: mdl-15978127

ABSTRACT

BACKGROUND: Cytokine flow cytometry (CFC) or intracellular cytokine staining (ICS) can quantitate antigen-specific T cell responses in settings such as experimental vaccination. Standardization of ICS among laboratories performing vaccine studies would provide a common platform by which to compare the immunogenicity of different vaccine candidates across multiple international organizations conducting clinical trials. As such, a study was carried out among several laboratories involved in HIV clinical trials, to define the inter-lab precision of ICS using various sample types, and using a common protocol for each experiment (see additional files online). RESULTS: Three sample types (activated, fixed, and frozen whole blood; fresh whole blood; and cryopreserved PBMC) were shipped to various sites, where ICS assays using cytomegalovirus (CMV) pp65 peptide mix or control antigens were performed in parallel in 96-well plates. For one experiment, antigens and antibody cocktails were lyophilised into 96-well plates to simplify and standardize the assay setup. Results ((CD4+)cytokine+ cells and (CD8+)cytokine+ cells) were determined by each site. Raw data were also sent to a central site for batch analysis with a dynamic gating template. Mean inter-laboratory coefficient of variation (C.V.) ranged from 17-44% depending upon the sample type and analysis method. Cryopreserved peripheral blood mononuclear cells (PBMC) yielded lower inter-lab C.V.'s than whole blood. Centralized analysis (using a dynamic gating template) reduced the inter-lab C.V. by 5-20%, depending upon the experiment. The inter-lab C.V. was lowest (18-24%) for samples with a mean of > 0.5% IFNgamma + T cells, and highest (57-82%) for samples with a mean of < 0.1% IFNgamma + cells. CONCLUSION: ICS assays can be performed by multiple laboratories using a common protocol with good inter-laboratory precision, which improves as the frequency of responding cells increases. Cryopreserved PBMC may yield slightly more consistent results than shipped whole blood. Analysis, particularly gating, is a significant source of variability, and can be reduced by centralized analysis and/or use of a standardized dynamic gating template. Use of pre-aliquoted lyophilized reagents for stimulation and staining can provide further standardization to these assays.


Subject(s)
Cytokines/blood , Flow Cytometry/standards , T-Lymphocytes/chemistry , Blood Preservation , Cryopreservation , Cytomegalovirus Infections/blood , Cytomegalovirus Infections/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry/methods , Freeze Drying , Humans , Indicators and Reagents , Laboratories , Lymphocytes/chemistry , Phosphoproteins/blood , Reproducibility of Results , Specimen Handling , Viral Matrix Proteins/blood
18.
J Virol ; 79(10): 6089-101, 2005 May.
Article in English | MEDLINE | ID: mdl-15857994

ABSTRACT

A critical priority for human immunodeficiency virus type 1 (HIV-1) vaccine development is standardization of reagents and assays for evaluation of immune responses elicited by candidate vaccines. To provide a panel of viral reagents from multiple vaccine trial sites, 60 international HIV-1 isolates were expanded in peripheral blood mononuclear cells and characterized both genetically and biologically. Ten isolates each from clades A, B, C, and D and 10 isolates each from CRF01_AE and CRF02_AG were prepared from individuals whose HIV-1 infection was evaluated by complete genome sequencing. The main criterion for selection was that the candidate isolate was pure clade or pure circulating recombinant. After expansion in culture, the complete envelope (gp160) of each isolate was verified by sequencing. The 50% tissue culture infectious dose and p24 antigen concentration for each viral stock were determined; no correlation between these two biologic parameters was found. Syncytium formation in MT-2 cells and CCR5 or CXCR4 coreceptor usage were determined for all isolates. Isolates were also screened for neutralization by soluble CD4, a cocktail of monoclonal antibodies, and a pool of HIV-1-positive patient sera. The panel consists of 49 nonsyncytium-inducing isolates that use CCR5 as a major coreceptor and 11 syncytium-inducing isolates that use only CXCR4 or both coreceptors. Neutralization profiles suggest that the panel contains both neutralization-sensitive and -resistant isolates. This collection of HIV-1 isolates represents the six major globally prevalent strains, is exceptionally large and well characterized, and provides an important resource for standardization of immunogenicity assessment in HIV-1 vaccine trials.


Subject(s)
AIDS Vaccines/standards , HIV Infections/virology , HIV-1/physiology , Africa , Americas , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Asia, Southeastern , CD4 Antigens/immunology , CD4 Antigens/pharmacology , Cells, Cultured , Drug Resistance, Viral , Genome, Viral , Giant Cells , HIV Antibodies/immunology , HIV Antibodies/pharmacology , HIV Envelope Protein gp160/genetics , HIV Infections/immunology , HIV-1/drug effects , HIV-1/genetics , Humans , Immune Sera/immunology , Immune Sera/pharmacology , Leukocytes, Mononuclear , Molecular Sequence Data , Neutralization Tests/standards , Phylogeny , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Vaccination
19.
Asian Pac J Allergy Immunol ; 22(1): 39-48, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15366657

ABSTRACT

To determine whether CD8+ T lymphocytes from Thai donor cells are susceptible to HIV-1 infection, undepleted peripheral blood mononuclear cells (PBMC) and CD8-enriched PBMC were infected with HIV-1 Thai subtype B and CRF01_AE (E) primary isolates. Virus kinetics in HIV-1 infection of CD4+ and CD8+ T lymphocytes peaked at day 7 or 10 post infection (pi); the TCID50 used for cell infection was proportional to the level of p24 production in the cultures. We also found that the level of p24 antigen in the supernatants of infected undepleted PBMC was significantly higher than that of infected CD8-enriched PBMC. Interestingly, both single positive T lymphocytes (CD4+ and CD8+ T lymphocytes) as well as double positive CD4+/CD8+ T lymphocytes were infected with HIV-1. The double positive T lymphocytes in PBMC were found only in the presence of both CD4+ and CD8+ T lymphocytes. The majority of p24+/CD4-/CD8- T lymphocytes were HIV-1 infected CD4 down-modulated PBMC. This report provides direct evidence that single positive CD8+ T lymphocytes and double positive CD4+/ CD8+ T lymphocytes from Thai donors can be infected with HIV-1 subtypes B and E in vitro.


Subject(s)
CD8-Positive T-Lymphocytes/virology , HIV Infections/immunology , HIV-1/pathogenicity , CD4-Positive T-Lymphocytes/virology , HIV Core Protein p24/immunology , HIV Seronegativity/immunology , HIV-1/immunology , Humans , In Vitro Techniques , Thailand
20.
J Virol ; 77(15): 8570-6, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12857927

ABSTRACT

A number of human immunodeficiency virus type 1 (HIV-1) non-B-subtype products have been developed for present or future vaccine trials; in Thailand, several studies using subtype B and/or CRF01_AE vaccines have been conducted. To better characterize the biologic properties of these subtypes, 70 HIV-1 subtype B and E isolates were phenotyped as syncytium-inducing (SI) or non-syncytium-inducing (NSI) isolates and assessed for sensitivity to neutralizing antibody (NAb). A significantly higher number of NSI subtype E viruses were neutralization sensitive than SI subtype E viruses (P = 0.009), while no association between viral phenotype and sensitivity to NAb was observed for subtype B (P = 0.856), suggesting a difference in the neutralization patterns of subtypes B and E. Strikingly, concurrent CD4 T-cell numbers were significantly lower for subtype E-infected patients whose isolates were more resistant to NAb, both for the overall study group (P < 0.001) as well as for the 22 patients with NSI isolates (P = 0.013). Characterization of the evolution of biologic properties of both B and non-B HIV-1 subtypes will provide a clearer understanding of the repertoire of antibodies that must be elicited for a vaccine to be effective against all phenotypes and subtypes.


Subject(s)
Antibodies, Viral/immunology , Giant Cells/physiology , HIV Infections/immunology , HIV-1/classification , HIV-1/physiology , Antibodies, Viral/blood , CD4 Lymphocyte Count , HIV Infections/virology , HIV-1/immunology , HIV-1/isolation & purification , Humans , Neutralization Tests , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...